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ABSTRACT 

Interactions with enemies are an important source of extrinsic mortality in nature. As 

such, traits that alleviate the detrimental effects of enemies are expected to be under strong 

selection and to evolve rapidly following shifts in the level of enemy-induced mortality. The 

evolutionary effects of increasing enemy pressure on defensive traits against those enemies are 

straight forward and well supported both theoretically and empirically ï increased enemy 

pressure should lead to increased investment in defences and promote the evolution of defences. 

The consequences of relaxing enemy pressure, on the flip-side, are more complex to predict 

given that the evolution of defensive traits are now more strongly influenced by their trade-offs 

with other fitness enhancing traits. In this dissertation I assessed, in nature, the eco-evolutionary 

implications of enemy release on defence against parasites and on host speciation. Through 

laboratory and field assays I used a common and deleterious parasite (Gyrodactylus spp.) and its 

poeciliid host (Poecilia reticulata - guppies) as a model system.  

First, I assessed whether removal of this parasite in replicate introductions in the wild led 

to the rapid evolutionary loss of resistance to Gyrodactylus, thus conforming to theoretical and 

laboratory-informed expectations, and whether this evolution occurred in parallel between the 

sexes. After two generations of laboratory rearing to control for plasticity and maternal effects I 

found that, contrary to theoretical expectations, female guppies that had evolved for four and 

eight generations released from Gyrodactylus had rapidly and repeatably evolved increased 

resistance to the parasite. After consideration of alternative explanations I concluded that this 

evolution is likely caused by rapid life-history evolution in response to release from predators. In 

addition, I found non-parallel evolution of the sexes. Male guppies in the ancestral population 

had higher resistance to Gyrodactylus than females, and parasite release in the introduced 
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populations did not lead to male evolution of resistance, which ïin turn - led to the evolutionary 

reduction of sexual dimorphism. I argue that the non-parallel evolution of resistance is caused by 

previous selection for high resistance in males that constrains further evolution of the trait.  

Given that the results indicate that simultaneous relaxation in predation pressure may 

have accounted for the findings, I then evaluated in a multidimensional selection context (i.e., 

changes in parasitism, predation, diet and productivity) whether evolution under enemy release, 

led to the formation of reproductive barriers (ecological speciation) through the evolution of 

mate choice and signaling traits. Despite theoretical expectations that multidimensional divergent 

selection would promote ecological speciation and observed rapid evolution of male signaling 

traits, enemy release in this system does not promote the evolution of assortative mating. I 

conclude that other aspects of sexual selection ï conserved preference for novel males ï 

counteracts the influence of strong multifarious divergent selection. 

Finally, I tested whether inter-specific social interactions (mixed-species group 

formation) can provide a degree of enemy release against contagious parasites, a rarely 

considered but potential advantage of mixed-species group formation.  I found that the presence 

and abundance of Gyrodactylus is lower in poeciliids forming mixed-species groups than those 

forming single species groups, which is consistent with the hypothesis that mixed-species groups 

provide a level of protection against contagious parasites.  

These studies add a new dimension to the growing evidence of contemporary evolution in 

the wild and point to the need for the re-consideration of simple expectations from host-parasite 

theory, and more broadly relaxed selection. In particular, the results highlight the need for 

increased consideration of multiple sources of selection and pleiotropy when studying evolution 

in natural contexts. 
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R£SUM£ 

 

 Les interactions avec les ennemis sont une source importante de mortalité dans les 

milieux naturels. De ce fait, on doit sôattendre ¨ ce que les traits qui r®duisent les effets n®fastes 

des ennemis soient soumis ¨ une forte s®lection et quôils ®voluent rapidement suivant des 

changements au niveau de la mortalit® induite par lôennemi. Les effets ®volutifs de 

lôaccroissement de la pression due aux ennemis sur les traits d®fensifs contre ces ennemis sont 

évidents et bien soutenus à la fois théoriquement et empiriquement ï lôaccroissement de la 

pression due ¨ lôennemi doit conduire ¨ un accroissement de lôinvestissement dans les défenses et 

promouvoir lô®volution des d®fenses. Les cons®quences du rel©chement de la pression due aux 

ennemis, en revanche, sont plus complexes ¨ pr®voir ®tant donn® que lô®volution des traits 

défensifs est à présent plus fortement influencée par leurs ñtrade-offsò avec dôautres traits 

augmentant la fitness. Dans cette dissertation, jô®value, en milieu naturel, les implications eco-

®volutives du rel©chement de la pression de lôennemi sur la d®fense contre les parasites et sur la 

spéciation. Au travers dôexp®riences en laboratoire et sur le terrain jôutilise un parasite commun 

et délétère (Gyrodactylus spp.) et son hôte poecilidé (Poecilia reticulata ï guppies) comme un 

système modèle.  

Tout dôabord, je teste si le retrait de ce parasite dans des introductions répliquées en 

milieu naturel entraîne une rapide perte évolutive de la résistance à Gyrodactylus, en conformité 

avec les prévisions théoriques et celles issues de tests en laboratoires, et si cette évolution a lieu 

en parallèle entre les sexes. Après deux générations de surveillance en laboratoire pour contrôler 

pour la plasticit® et les effets maternels, jôai trouv® que, contrairement aux pr®dictions 

théoriques, les femelles guppies qui avaient évolué depuis quatre et huit générations en lôabsence 
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de Gyrodactylus avaient rapidement et de manière répétée évolué vers un accroissement de la 

r®sistance envers le parasite. Apr¯s avoir consid®r® des explications alternatives, jôen ai conclu 

que cette évolution est probablement due à une évolution rapide dôhistoire de vie en r®ponse ¨ la 

diminution de pression par les pr®dateurs. De plus, jôai trouv® une ®volution non-parallèle des 

sexes. Les mâles guppies de la population ancestrale avaient une résistance plus forte au 

Gyrodactylus que les femelles, et le relâchement de la pression parasitaire dans les populations 

introduites nôa pas conduit ¨ lô®volution de la r®sistance des m©les, ce qui ïen retour ï conduit à 

une r®duction ®volutive du dimorphisme sexuel. Je soutiens que lô®volution non-parallèle de la 

résistance est causée par la sélection passée pour une forte résistance chez les mâles qui contraint 

lô®volution future de ce trait. 

Etant donné que les résultats indiquent que le relâchement simultané de la pression de 

prédation pourrait expliquer les r®sultats, jôai test® ensuite, dans un contexte de s®lection 

multidimensionnelle (i.e., changements en termes de parasitisme, prédation, alimentation et 

productivit®), si lô®volution en conditions de rel©chement de la pression due ¨ lôennemi, conduit 

¨ la formation de barri¯res reproductives (sp®ciation ®cologique) au travers de lô®volution du 

choix du partenaire et des traits de signalisation. Malgré les prédictions théoriques que la 

sélection divergente multidimensionnelle devrait promouvoir la spéciation écologique et 

lô®volution rapide observ®e des traits de signalement des m©les, la diminution de pression due ¨ 

lôennemi dans ce syst¯me ne promeut pas lô®volution de lôaccouplement entre semblables. Je 

conclus que dôautres aspects de la s®lection sexuelle ïpréférence conservée pour les nouveaux 

mâles- contrebalance lôinfluence de la s®lection divergente forte et tr¯s diverse. 

Enfin, je teste si les interactions sociales inter-spécifiques (formation de groupes mixtes 

dôesp¯ces) peut fournir un certain degr® de rel©chement de la pression due ¨ lôennemi contre les 
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parasites dangereux, un avantage potentiel  mais rarement considéré de la formation des groupes 

mixtes dôesp¯ces. Jôai trouv® que la pr®sence et lôabondance des Gyrodactylus est plus faible 

dans les poecilid®s formant des groupes mixtes dôesp¯ces que dans ceux formant des groupes 

dôune seule esp¯ce, ce qui est en accord avec lôhypoth¯se selon laquelle les groupes mixtes 

dôesp¯ces fournissent un niveau de protection contre les parasites contagieux. 

 Ces ®tudes ajoutent une nouvelle dimension aux preuves grandissantes dôune ®volution 

contemporaine en milieu naturel et établit la nécessité de reconsidérer les prédictions simples de 

la théorie hôte-parasite, et plus largement de la sélection en contexte de relâchement de 

contraintes. En particulier, les résultats de ces expériences mettent en lumière la nécessité de 

considérer davantage les multiples sources de sélection et la pléiotropie quand on étudie 

lô®volution en contexte naturel. 
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the understanding of speciation by showing that, although parasitism is expected to be a driver of 

ecological speciation, strong divergence in parasitism under multifarious selection does not lead 

to assortative mating in the guppy system. Furthermore, through preference for novel males, 

Chapter 4 reconciles the common observation that guppies show strong and rapid divergent 
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explores a novel mechanism for mixed-species group formation and shows that when two 
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PLOS One, Chapter 3 is under review at the Journal of Evolutionary Biology, and Chapter 4 will 
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CHAPTER 1 

Introduction 
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 The effects of ecology and evolution on enemy-victim interactions in nature are the 

focus of my dissertation. I explore enemy-victim interactions in the context of enemy release, a 

form of relaxed selection, where the strength of a previously important source of selection is 

decreased or eliminated. Throughout my thesis I first assess the implications of enemy release, in 

nature, on the evolution of defence against enemies and how this process differs between the 

sexes. I then expand the focus to a broader scale and ask whether enemy release and multifarious 

selection can lead to rapid speciation through the evolution of assortative mating. Finally I assess 

whether interspecific social interactions can provide a level of enemy release when victims 

cannot fully evade but have to co-exist with their enemies.  

 

1.1 Relaxed selection and enemy release: 

Relaxed selection 

Natural selection is the main cause of adaptive evolution in the wild (1, 2) and commonly 

occurs when populations are exposed to changes in their biotic or abiotic environment. 

Environmental change can introduce a number of alterations that can modify the selective regime 

experienced by a population and lead to rapid initiation of adaptive evolution (3, 4). These 

changes can be broadly categorised along a continuum from increased to decreased action of a 

source of selection. In the first case, there is an increase in the presence of a previously existent 

source of selection or, in an extreme case, the appearance of a novel source of selection 

(increased selection or emergence); the second case is known as relaxed selection (5, 6), a 

decrease in the presence of a source of selection where its most extreme expression would be the 

complete loss of that previously important source (5). Although increased selection and 

emergence are more often studied than relaxed selection, both in nature and in the laboratory, 
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there is no a priori reason to expect it to be a more common process than relaxed selection in 

nature. Therefore, there is a major gap in our understanding of evolutionary processes.  

The distinction between increased versus relaxed selection is important given that traits 

are expected to evolve differently under these two situations (5, 6). Increased selection and 

emergence are well studied phenomena with straight forward expectations: increased response of 

the affected trait, and evidence from both field and laboratory studies often support this 

hypothesis (7-12). However, under relaxed selection the evolution of a trait is no longer under 

the direct effects of a previously important source of selection and therefore the traitôs 

contribution to fitness now depends on its interactions with other fitness enhancing traits (i.e., 

trade-offs) (13, 14). Although most studies have been performed in the laboratory, there is 

accumulating evidence showing how relaxed selection affects traits in nature (15-17). In both lab 

and field studies the reported outcome is either no change in trait expression or loss of the trait 

(5, 6, 13). The evolution of a trait under relaxed selection is thus determined by the type of 

correlation between that trait and those traits with which it co-varies (5). Furthermore, the degree 

to which the trait under relaxed selection is costly or prone to mutation accumulation is expected 

to determine the rate at which the trait will be lost (5, 6).  

 

Enemy release 

A special case of relaxed selection is enemy release, which is the focus of this 

dissertation. I define enemy release as the increased opportunity of victims to reduce the direct 

detrimental effects on their fitness caused by another species (i.e., the enemy). In that sense, 

parasites and predators are the most common enemies that victims face. Enemy release can occur 

in many instances, perhaps the most immediate concept that comes to mind is enemy release 
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following a species translocation to a new environment, specifically, out of its natural range (18, 

19). Nonetheless, migration within the species range, following changes in the biotic and abiotic 

environment can also lead to release from enemies (20). Yet, not all cases of enemy release need 

to be as drastic as to involve a complete disappearance of the enemy, victims can also achieve a 

level of reduction of the detrimental effects caused by their enemies through behavioural (21-23), 

developmental (24-26) or evolutionary (27-30) changes. In this thesis I assess in nature, through 

laboratory and field assays, the evolutionary impacts of enemy release on victims and a novel 

behavioural mechanism that can lead to enemy release.  

 

1.2 What is a parasite? 

The type of enemy I focus on in this dissertation are parasites. Parasites are classically 

defined as organisms that cause harm (i.e., have a negative impact on the hostôs fitness) and 

which possess adaptations that allow them to [1] feed on, and [2] live on (ectoparasites) or in 

(endoparasites), another organism, the host (31-33). These activities do not necessarily or 

immediately lead to the hostôs death (a key distinction from parasitoids and predators). There are 

more restrictive definitions of parasites which limit the group to metazoans and some protozoans 

(31), thus excluding other important pathogens such as viruses, bacteria and fungi. Although the 

core of my experiments relates to the effects of a metazoan ectoparasite (Gyrodactylus spp.) 

from the taxon Platyhelminthes, I will use the term parasite in its more general and broadest 

connotation, that is, to include all pathogens. 

Parasites are a pervasive and influential driver of ecological processes (34). Parasites 

account for more than one third of animal diversity (32, 35) and can represent a larger biomass 

than that of predator within ecosystems (36). Parasitism is a common trophic strategy (35, 37), 
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an important source of extrinsic mortality (38), can modify the strength of interspecific 

interactions (39) and can shift the structure and energy flow of foodwebs (37). However, until 

recently parasites have often been neglected in ecological and evolutionary studies, yet 

understanding their effects on ecological and evolutionary dynamics is essential to improve our 

conservation programmes (40, 41), food security (42), disease control strategies (43), invasive 

species management (19) and possibly poverty alleviation (44). Finally, a more personal reason 

for the study of these questions is that parasites and their eco-evolutionary interactions with their 

hosts are simply fascinating.  

 

1.3 Evolution in the lab and in nature: 

The empirical evidence for evolution under enemy release is derived from two main 

approaches: [1] laboratory-based experimental evolution and [2] field surveys. The first 

approach, experimental evolution in the laboratory, manipulates the presence of enemies in a 

repeatable way while controlling for or removing variation in other selective factors (45). Yet, 

evolution in nature occurs in the context of these other factors (i.e., multidimensional selection), 

which could strongly modify the evolutionary response to divergence in enemy levels and thus 

influence our ability to predict and understand the process. These other factors become of 

particular importance when studying enemy release given that trait evolution following the 

removal of a previously important source of selection becomes subject to trade-offs with other 

traits and therefore to effects of other sources of selection (5).  

The second approach, field surveys, incorporates the effects of multiple interacting 

selective pressures, and therefore informs on the effects of multidimensional selection and the 

relative importance of the selective factor of interest. Nonetheless, this approach is rarely able to 
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discriminate cause and effect or the rate at which evolution proceeded. Furthermore, field 

surveys rarely allow to disentangle the ecological causes of the phenotype (i.e., phenotypic 

plasticity and maternal effects) from the genetic component of the phenotype (the one which is 

subject to evolution).   

A way to link these two approaches is to experimentally manipulate enemy levels in 

nature which then allows assessing the rate and nature of the response to changes in enemy levels 

in the context of natural variation in other selective factors (46). This third approach is more 

powerful when informed by data gathered from the previous two approaches, such that there is a 

clear understanding of how evolution is expected to proceed when only the focal source of 

selection varies and there is substantial understanding of the other relevant sources of selection 

and trait variation under natural conditions. Therefore, in order to assess evolution under enemy 

release I use experimental manipulations of enemy levels in nature. 

 

1.4 Evolution of defence: 

The impacts of parasites on host fitness can be partitioned into different components, for 

example, parasite infection has been shown to reduce the hostôs reproductive output, growth rate, 

mating success, and survivorship (34, 47). Given that parasites can cause intense negative effects 

(directly and indirectly) on host fitness and that they are ubiquitous in nature (32, 34, 37) it is 

generally expected that parasites impose strong selection on a hostôs defence (i.e., mechanisms 

and processes that reduce fitness loss when parasites are present (33)). Defence against parasites 

can be expressed by hosts in multiple ways (48, 49) which can include 

physiological/immunological (49, 50) and behavioural (51-53) responses. The magnitude of the 

detrimental effects caused to the host by parasites is determined by [1] the parasiteôs ability to 
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take away resources from the host, [2] the number of parasites carried by the host (54), [3] the 

likelihood that infection facilitates the establishment of other pathogens (55), [4] the amount of 

resources and energy the host invests in its response to the parasite (49, 50, 56), [5] the duration 

of the infection, and [6] the host's ability to reduce the number of parasites (resistance) or the 

damage caused by a given number of parasites (tolerance) (57-59).  

Investment in defence against parasites has associated benefits and costs which affect the 

evolution of this trait. Evolutionary models of host resistance to parasites (60, 61) predict that 

increased parasite-induced mortality, which correlates with increased parasite abundance and 

prevalence, selects for hosts that better avoid, control or clear parasites, leading to the evolution 

of increased resistance in the host population - since these individuals have higher lifetime 

reproductive success. Laboratory studies with bacteria (62-65), protozoans (12) and invertebrates 

(29, 66-68) as well as comparative field studies (30, 69, 70) strongly support this pattern. 

Similarly, theory predicts that a decrease in parasite-induced mortality and morbidity, which 

correlates with decreased parasite abundance and prevalence, will select for individuals that 

invest less in resistance and more in other fitness-enhancing traits, leading to the evolution of 

decreased resistance (60, 61). Only laboratory-based studies on bacteria and invertebrates have 

directly tested for the evolution of resistance under relaxed selection; in all cases the result has 

been no evolutionary change or the evolution of decreased resistance (13, 71-76), as would be 

predicted under relaxed selection (5).  

Resistance against parasites increases the fitness of exposed individuals, and yet the 

degree of resistance varies among populations of the same host species and among individuals 

within those populations (i.e., high resistance it is not a fixed trait), which suggests that 

resistance has associated costs (33, 77). These evolutionary costs of resistance are often assessed 
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as trade-offs with life-history traits (13, 29); one such trait that often trades-off with resistance is 

fecundity/fertility (78, 79,  but see 80). When multiple traits are measured as potential costs of 

resistance, the most frequent outcome is that a few, but not all, of the evaluated traits show a 

negative correlation with resistance. Therefore, the fact that some studies (e.g., 59, 81) do not 

detect a trade-off between resistance and some specific life-history traits should not be taken as 

evidence of lack of costs of resistance; it seems more likely that resistance either trades off more 

strongly with other unmeasured life-history traits, or alternatively the costs are expressed 

differently (e.g. physiological costs ).  

One further consequence of divergent exposure to enemies among victim populations is 

ecological speciation (82) (i.e., the build-up of reproductive barriers owing to divergent natural 

selection between different environments). On the one hand, divergent predation levels have 

been shown to drive reproductive isolation (83, 84), where individuals from different populations 

preferentially mate with individuals from similar environments and similar adaptive traits rather 

than with more divergent, but more closely related, ecotypes. Parasitism, on the other hand, is 

increasingly suggested as an important driver of ecological speciation (85-87) yet empirical 

support for parasites as drivers of ecological speciation is weak (86). Additionally, natural 

divergence in enemy levels is often accompanied by divergence in other biotic and abiotic 

components of the environment (86) (i.e., high dimensionality) which should increase the 

number of independent traits under selection (i.e., multifarious selection), and lead to increased 

progress towards ecological speciation (88, 89).  
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1.5 Various ways to measure defence: 

Hosts can defend themselves from parasites in many ways. These include behavioural 

and physiological (including immunological) mechanisms that reduce the probability of 

becoming infected or reduce parasite loads once infection has occurred (33, 48, 90). Behavioural 

components of defence include, for example, active avoidance of places associated with higher 

parasite abundances (52), modifying grouping behaviour to reduce attack or transmission of 

parasites (91-93), engaging in cleaning behaviours such as grooming and allogrooming (51, 94) 

or the ingestion of anti-parasitic substances (95).  

Physiological mechanisms of defence are varied and include, among others, changes in 

body temperature (96, 97) and the various molecules and pathways that compose the recognition, 

signaling and effector branches of the immune system (33). These components can be measured 

in various ways, for example by targeting direct measures of the amount of swelling in response 

to antigen injections (e.g., PHA) (98), the degree and rate of encapsulation of foreign objects 

(99) and antibody titers after exposure to an antigen (100). These measures are useful when 

variation in parasite loads does not correlate with damage experienced by hosts or when direct 

counts of parasite numbers are difficult. However, given the multitude of possible behavioural 

and physiological mechanisms that need to be accounted for, the most direct and integrative 

measure of the host ability to control parasite numbers is to directly assess parasite numbers 

under controlled infection. Under certain circumstances (e.g., when using ectoparasites that 

reproduce on their hosts) the whole infection dynamic can be monitored at the individual host 

level and measures such as establishment success, peak load, parasite growth rate and infection 

clearance rate can be determined (101). In systems where parasite loads cannot be directly 

counted or where the main interest lies in host population dynamics, resistance can be measured 
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as the proportion of individuals in a group that become infected or survive infection (12, 67, 68, 

102), or as the concentration of parasites needed to kill a certain proportion of the host 

populations (71, 76).   

One common problem that the above metrics share when interpreted alone is the 

assumption that a stronger response or a lower parasite load necessarily implies higher host 

fitness (103). Although this is partially correct, given that lower loads correlate with lower 

damage, overinvesting in resistance is done at the cost of investment in other fitness enhancing 

traits (56) and high resistance can lead to self-reactivity (e.g. autoimmune responses) (104). 

Furthermore, defence can be conceptualised as not only being constituted by resistance 

mechanisms (the ability of hosts to reduce their parasite loads) but also as being constituted by 

tolerance mechanisms (the ability of hosts to reduce the negative impacts of a given parasite 

load) (57-59, 61, 105). Investment in these components is expected to have a negative correlation 

(57, 61) because reducing the damage caused by parasites that are cleared before they can cause 

damage, or investing resources in eliminating parasites that cause no damage, would both be an 

inefficient use of resources. Therefore, a comprehensive understanding of defence and its 

evolution under enemy release should include not only measures of resistance but of tolerance 

too.  

 

1.6 Group formation as a mechanism of defence against enemies: 

As mentioned above, hosts have non-physiological ways of defending themselves against 

enemies, and behavioural strategies might play a crucial role in defence when victims cannot 

fully evade their enemies. One such strategy is group formation (106). Group formation is a 

common adaptive strategy by which individuals that maintain a close spatial association have a 



11 

  

higher relative fitness than those that are by themselves (106). Although members of a group 

benefit from a series of advantages (such as increased foraging success (107, 108), reduced 

thermal stress (109), increased locomotion efficiency (110) and enhanced mating opportunities 

(111)), reduced predation risk (21, 112-115) is an important and well-studied mechanism of 

group formation. As group size increases, victims (i.e., prey-species) are more likely to detect 

(113), reduce their exposure to (112) and decrease their probability of being attacked by (21) 

enemies (i.e., predators) as well as reduce the ability of predators to make effective attacks (115). 

In this sense, group formation is an effective enemy release mechanism when victims cannot 

fully escape their enemies. 

Parasites are another type of enemy that is affected by groups, yet the effect of group size 

is more nuanced than for predators. On the one hand, when parasites transmit through free-living 

stages or vectors (i.e., actively or passively search for their hosts) increasing group size may 

confer similar benefits as those obtained against predators (116). On the other hand, parasites 

that are transmitted through host to host contact (i.e., contagious parasites (116)) benefit from 

increased contact among suitable hosts as group size increases. Therefore, as group size 

increases there is a higher mean number of parasites per individual victim (i.e., host) and larger 

percentage of infected individuals in the group (116-118).  In this sense, increased contagious 

parasite transmission is a common cost of group living (119). 

One way in which in which victims may be able to reduce the costs of forming groups 

(i.e., constagious parasite transmission) while keeping some of the advantages of larger groups 

(i.e., antipredator advantages) is by forming mixed-species groups (119). Mixed-species groups 

are frequent in nature (120-122) and occur when members of two or more species overlap 

spatially and temporally (106, 120). These groups are commonly explained as providing 
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foraging, vigilance and anti-predator benefits to members (122, 123), but the effect of parasitism 

as a possible driver of mixed-species groups has been mostly overlooked. Mixed-species group 

formation can serve as a strategy to avoid mobile and vector transmitted parasites, and has been 

reported to occur when the numbers of conspecific host individuals are low (93).While a 

heterospecific association provides the same benefits as a monospecific group in terms of the 

numerical advantage (i.e., larger groups lead to decreased individual risk and exposure), the 

heterospecific nature of mixed-species groups may play a crucial role as a mechanism against 

contagious parasites (119). For example, when contagious parasites are highly host-specific, an 

equally-sized single-species group provides twice as many opportunities for transmission and 

establishment as a mixed-species group with an evenly-balanced host-species composition, thus 

leading to higher parasite loads (mean abundance and prevalence) in the single-species groups. 

In my thesis, I conducted a first empirical test of mixed-species group formation as a potentially 

important mechanism providing enemy release to parasitised fish.  

 

1.7 Guppies and Gyrodactylus: The study system: 

In order to assess the ecological and evolutionary effects of enemies on their victims I use 

a Poecilia reticulata ï Gyrodactylus spp. host-parasite system. The host species, guppies 

(Poecilia reticulata), are live-bearing poeciliid fish native to north-eastern South America (i.e., 

Guyana, Venezuela and, Trinidad and Tobago) (124) and are a well-established microevolution 

model species (124). Gyrodactylus is a diverse genus of teleost skin ectoparasites (>400 species) 

that have important ecological and economic consequences (125). Furthermore, they are a well-

studied model species for host parasite dynamics and there has been recent increasing interest in 

their importance as an ecological driver in the guppy system (126, 127).   
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Guppies: Poecilia reticulata 

Guppies occur in first to fourth order tropical streams in Trinidad, and occur under a wide 

range of physiochemical conditions, ranging from pristine freshwater streams, brackish anoxic 

streams, naturally occurring high-temperature oily streams (>26 ºC), highly human-modified 

streams, as well as farm, urban and industrial polluted reaches (Pers. Obs.). 

A key feature of the Trinidadian guppy system, in the northern range mountains, is that 

guppy populations within watersheds are separated by waterfalls. Each population located above 

a waterfall represents an independent colonization event from the adjacent below-waterfall 

population ï genetic divergence between watersheds is greater than between populations above 

and below waterfalls (128, 129). Therefore above waterfall populations represent multiple 

independent and repeatable events of local adaptation. Below and above waterfall environments 

diverge in many biotic and abiotic characteristics (124) that lead to divergent selection between 

these environments. For example, below waterfall environments are characterised by higher 

predator pressure (130, 131), higher primary productivity (132), wider streams  and lower guppy-

densities (20, 133), whereas above waterfall environments have the opposite characteristics. This 

environmental divergence has been shown to correlate with divergence in life-history (134) as 

well as in morphological (135, 136) and behavioural (137-140) traits in guppies. Moreover, 

guppy experimental translocations in Trinidad - from below to above waterfall sites - have been 

effectively used to demonstrate the role of environmental divergence (i.e., divergent selection) 

on trait evolution, and have identified chiefly predation as the main cause of guppy trait 

divergence (life-history (141-143), morphological (144) and behavioural (145)).  

Traditionally, strong variation in guppy adaptive traits has been explained by the 

binomial division between high predation and low predation environments (130). Specifically, 
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high predation environments are characterised by a diverse community of piscivorous fish that 

include Chrenicichla spp. Aequidens pulcher, Cichlasoma bimaculatum and Hoplias 

malabaricus, whereas in low predation environments only a gape limited fish is present (Rivulus 

hartii) (124, 131). In high predation communities mortality tends to be higher for adult guppies, 

and higher for males than females (146), while in low predation sites juvenile guppies may be 

preyed upon by R. hartii (147). Yet, the reality is that guppies show fine-scale gradual variation 

in life-history traits in response to more subtle gradual changes in the predator community 

richness (148), and there is increasing awareness of the importance of other biotic and abiotic 

factors that co-vary along the predation divide. Some of these covarying factors that can be 

relevant for guppy evolution are divergent diets (149, 150), productivity (132), and density 

effects (151, 152). Perhaps the strongest evidence in favour of a predominant role of predation 

over other axes of variation comes from the observation that populations a few meters apart 

above and below waterfalls differ strongly in their traits and exposure to predators but the abiotic 

conditions of their environment are almost identical (20), suggesting that predation is the most 

likely cause for the observed differences.  

One possible source of variation among guppy populations that has received relatively 

less attention until recently is parasitism. Nonetheless, the effects of environmental divergence 

on parasite loads in the wild has gained increasing interest during the last decade and shows 

increased parasitism in high predation reaches (126, 130). Yet the understanding of the 

evolutionary dynamics of defence against parasites is scarce and derived from correlational 

evidence. In nature, guppies are infected by a diverse array of pathogens such as Trichodina spp., 

Camallanus spp. and Ichtyophthirius spp. (Pers. Obs., Gheorghiu et al unpublished data). 
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Among these pathogens, the most prevalent macroparasite of wild guppies is Gyrodactylus spp. 

(153).  

 

Gyrodactylus spp. 

Two species of Gyrodactylus infect guppies in the wild ï G. turnbulli and G. bullatarudis 

(153). Although these two species have similar requirement niches, life-histories and 

morphologies (154), they can coexist in the same host populations and even on the same 

individual hosts (153), presumably because of a low degree of resource partitioning (i.e. 

microhabitat specialization - 153, 155). G. turnbulli has been reported to have a higher degree of 

host specificity than G. bullatarudis under experimental infections in the laboratory (156, 157), 

yet there is no supporting evidence for these claims from wild populations; it seems unlikely that 

given the opportunity to infect their specific hosts these parasites will establish on non-specific 

hosts.   

Resistance to Gyrodactylus spp. in the guppy can be partially decomposed into innate and 

acquired resistance (155, 158-160), where innate resistance can limit the initial establishment and 

growth rate of the parasite population and acquired resistance affects the later stages of the 

primary infection and the establishment and development upon re-infection. The initial host 

response to G. turnbulli and G. bullatarudis in guppies is not species specific to either one of 

these parasites (155), yet guppies vary in their ability to resist both parasites species (161) and 

even different strains within a given species (161; Perez-Jvostov et al. unpublished). 

Nonetheless, overall guppy differences in ranking of resistance among populations are 

maintained independently of the parasite species/strain used (161). Although mechanisms 

involved in guppy resistance to Gyrodactylus have not been fully characterised, the involvement 
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of the immune system is inferred from experiments on salmonids which have shown that 

Interleukin 1ɓ stimulates mucus production, thus impairing the parasiteôs ability to move and 

feed, and Complement factor C3 binds to and kills the parasite (125). Additionally, although it is 

clear that guppy resistance to Gyrodactylus spp. has a heritable component (162, 163), it is also 

influenced by multiple non-genetic components, such as temperature (164), salinity (165, 166), 

contaminants (167-169), diet (170, 171), host condition (171), predation (126,  but see 127), and 

social interactions (172, 173). Furthermore, resistance to Gyrodactylus spp. in other systems has 

been shown to respond to host stress (174), seasonality (175-177) and testosterone (178). 

Overall, the effects of the non-genetic components appear strong enough to confound the 

heritable component if phenotypic plasticity (and perhaps maternal effects) between individuals 

is not controlled for, which could therefore compromise the conclusions of studies that make 

inferences about variation on individual resistance. I find particularly concerning the effect of 

acquired resistance, since contrary to Scott (179), who found total loss of acquired resistance on 

pet-store guppies after 4 to 6 weeks post exposure, Cable and Van Oosterhout (160) report that 

wild guppies remain refractory to infection for at least 53 days after the end of a primary 

infection; perhaps due to unidentified infection by multiple parasites in wild-caught guppies or 

perhaps due to more than five-fold variation in MHC diversity between pet-store and wild 

guppies (160, 180). Moreover, although there is support for a role of MHC Class IIB alleles 

explaining some of the of guppy variation in resistance to Gyrodactylus (163, 181, 182), our 

understanding of the mechanisms and contributions of MHC to guppy defence is limited. It is 

therefore most appropriate to use wild-caught, laboratory-reared F2 guppies to assess the 

evolution of resistance against Gyrodactylus; this approach controls for the confounding effects 

of phenotypic plasticity and maternal effects.  
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Advantages of the model system: 

The guppy-Gyrodactylus host-parasite model is a convenient and appropriate system to 

explore questions on enemy release and evolution in nature. It is convenient because both 

Gyrodactylus and guppies are amenable to laboratory breeding over multiple generations, have 

relatively short generation times, are well studied model species both in the laboratory and field, 

and because the whole infection dynamic of the parasite can be tracked without killing the host. 

It is an appropriate system because resistance shows potential for rapid evolution through natural 

selection and Gyrodactylus can be an important source of selection. Previous research in wild 

guppies has shown rapid evolution of life-history, behavioural and morphological traits in 

response to divergence in predation (141, 142) and productivity (132) suggesting the potential 

for rapid evolution of resistance. Resistance shows all the components for evolution through 

natural selection, [1] guppies show variation in their resistance to Gyrodactylus (126, 127, 160, 

161), [2] this resistance is heritable (162, 163) and [3] defence against this parasite influences 

individual survival (161, 183) and reproduction (184-187). Gyrodactylus is highly likely to be an 

important agent of selection because [1] it is the most prevalent macroparasite of wild guppies 

(188), [2] causes high levels of mortality in both the laboratory (161) and field (183), [3] the 

lesions it causes on the skin serve as entry point for secondary bacterial and fungal infections 

(55, 189) [4] and infection influences mate choice in both sexes (159, 184-187). Therefore, the 

system has the potential to allow the evaluation of contemporary evolution of defence under 

enemy release in nature.  

Furthermore, guppies are used as a sexual selection and behavioural ecology model 

species, (124) two subject areas which provide further insights into the mechanisms and process 

of defence evolution against parasites and into the ecological drivers of variation in infection. In 
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general, guppies show adaptively divergent preferences for male colouration in response to 

environmental divergence, specifically the presence of predators (see 190 for a review). Yet 

guppy size (191), nutritional status (192) and infection history (159, 184-187) also affect female 

and male mate preferences. In a similar way, guppies also show divergent social behaviour in 

response to changes in predation (137, 139, 140) and parasitism (193). Additionally, guppy 

distribution overlaps with a closely related poeciliid fish - Poecilia picta (194, 195) ï and when 

these two species co-occur they form mixed-species groups (196, 197). Thus, the system also has 

the potential to allow the assessment of the effects of enemy release on ecological speciation, and 

the effects of social interactions on enemy release.   

 

1.8 Chapter overview: 

Although the guppy-Gyrodactylus system has provided insight into some aspects of the 

ecology of host-parasite dynamics there has been no assessment of the evolutionary dynamics of 

defence against parasites in the system, nor of its contribution to speciation or how direct 

interactions with other species affect parasitism. Additionally, previous research has rarely 

disentangled individual defence against parasites from the influence of stochastic events of 

transmission caused by interactions within groups (i.e., infection dynamics with contagious 

parasites in groups are strongly influenced by inter-individual interactions). Furthermore, 

previous research has not isolated maternal effects or phenotypic plasticity from the genetic 

component of antiparasite defence. Therefore, throughout this thesis I assess, through laboratory 

and field assays, the evolutionary impacts of enemy release on victims in nature and a novel 

behavioural mechanism that can lead to enemy release. Specifically I assess the evolution of 
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defence against parasites (Chapters 2 and 3), its implications for speciation (Chapter 4), and 

whether social interactions among species affect defence against parasites (Chapter 5).  

In Chapter 2, I assess the evolution of resistance against a common and deleterious 

parasite, Gyrodactylus spp, after the experimental release from this parasite in four replicate 

introductions of guppy (host-)populations in nature. Although a reduction in the strength of 

selection is expected to cause the evolution of reduced trait expression or no change in trait 

value, we found that, contrary to theoretical expectations, the fourth- and eighth-generation 

descendant female guppies had rapidly and repeatably evolved increased resistance to the now 

absent parasite. This change in resistance is not owing to plastic or maternal effects (removed by 

common garden laboratory rearing to F2 (141)), nor to resistance-tolerance trade-offs or 

differences in productivity among the sites. I suggest as a leading mechanism that rapid life-

history evolution, common to such introductions (141-143), in response to release from predators 

pleiotropically drives increased resistance to Gyrodactylus. In Appendix A, I discuss further and 

reject some alternative explanations - artificial selection and density effects ï while highlighting 

the importance of experimental evolution in nature.  

Females and males often show stable trait dimorphisms, even when they constantly 

exchange genetic material within a population, and would thus be incorrect to assess the trait as a 

character of the population and not of each sex independently. One trait that is often sexually 

dimorphic is defence against parasites, yet the implications of sexual dimorphism are rarely 

considered when assessing defence evolution. Therefore in Chapter 3, I expand on the previous 

work done on females to assess whether both male and female guppies evolve resistance in 

parallel in response to enemy release. This question results from the increasing attention given to 

the reality that populations in different environments often differ substantially in adaptive traits, 
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suggesting a non-parallel component of evolution, and the fact that my co-authors and I (126) 

previously found that wild guppies are sexually dimorphic in resistance but were unable to tease 

apart the genetic component of resistance from phenotypic plasticity, maternal effects and social 

interactions. To address these questions I used fourth- and eight-generation descendant guppies 

released from Gyrodactylus spp. from the four replicate introductions. I found that in the 

ancestral source population male guppies had higher resistance to Gyrodactylus than females, 

and that parasite release in the derived populations led to non-parallel evolution of the sexes. 

Male guppies did not evolve in resistance, as expected by enemy release theory, whereas the 

previously reported increased resistance of females led to the evolutionary reduction of sexual 

dimorphism in resistance. 

In Chapter 4, I continue assessing the evolutionary effects of enemy release in two of the 

introduced populations and use the source population as a reference. I evaluate if enemy release, 

within a broader multifarious selection framework, leads to ecological speciation by assessing 

mate-choice preferences among the source and introduced populations. This chapter is not 

exclusively concerned with the evolution of defence against parasites (which is expected to be 

most strongly influenced by parasitism) but also with speciation. Here, parasitism is one of many 

axes of environmental change that could lead to reproductive isolation. I therefore focus on the 

multifarious selective forces to which the introduced populations where subjected.  I used the 

eighth- and twelfth-generation of the introduced guppies to assess the preference of females from 

each population towards males from each population in a paired design. I found that despite the 

rapid evolution of male signaling traits, positive assortative mating did not evolve. In its place, 

dissasortative mating occurred due to the maintenance of the ancestral preference for novel 
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males. I conclude that strong multifarious divergence in this system did not promote the rapid 

evolution of assortative mate choice. 

Finally, in Chapter 5, I assess a social mechanism of enemy release when victims cannot 

fully escape their enemies - as in previous chapters - but have to coexist with them. Predation 

and parasitism are two of the most important sources of extrinsic mortality in nature (38), by 

forming groups, victims can gain some protection against predators but may increase their risk of 

being infected by contagious parasites (119). A way of resolving this conflict might be by 

forming mixed-species groups, thereby reducing the number of available hosts to host-specific 

contagious parasites. To test this hypothesis I move away from the introduction experiments into 

the lower reaches of Trinidadian rivers, and into the transition zone between fresh to brackish 

water, to explore how the Gyrodactylus load of guppies and their sister species (Poecilia picta 

(194) ï which is infected by their own species of Gyrodactylus: Gyrodactylus pictae (198)) ï 

changes between single-species and mixed-species groups. Fish were collected from sites were 

single- and mixed-species groups occur in three different basins and assessed for their 

Gyrodactylus loads. The sites of collection were determined based on whole island exploration 

as part of a project with my co-authors to determine the ecological correlates of the distribution 

limits of these two poeciliid species (195). I found that the presence and abundance of 

Gyrodactylus was lower when fish of both species were part of mixed species groups relative to 

single-species ïgroups, which is consistent with the hypothesis that mixed-species groups 

provide a level of protection against contagious parasites.  
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CHAPTER 2 

Experimental elimination of parasites in nature leads to the evolution of increased 

resistance in hosts 

 

Felipe Dargent, Marilyn E. Scott, Andrew P. Hendry and Gregor F. Fussmann (2013). 

Experimental elimination of parasites in nature leads to the evolution of increased 

resistance in hosts. Proceedings of the Royal Society B. (280) 1773. DOI: 

10.1098/rspb.2013.2371  
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2.1 Abstract: 

A reduction in the strength of selection is expected to cause the evolution of reduced trait 

expression. Elimination of a parasite should thus cause the evolution of reduced resistance to that 

parasite. To test this prediction in nature, we studied the fourth- and eighth-generation 

descendants of guppies (Poecilia reticulata) introduced into four natural streams following 

experimental elimination of a common and deleterious parasite (Gyrodactylus spp.). After two 

generations of laboratory rearing to control for plasticity and maternal effects, we infected 

individual fish to assess their resistance to the parasite. Contrary to theoretical expectations, the 

introduced guppy populations had rapidly and repeatably evolved increased resistance to the 

now-absent parasite. This evolution was not due to a resistance-tolerance trade-off, nor to 

differences in productivity among the sites. Instead, a leading candidate hypothesis is that the 

rapid life-history evolution typical in such introductions pleiotropically increases parasite 

resistance. Our study adds a new dimension to the growing evidence for contemporary evolution 

in the wild, and also points to the need for a re-consideration of simple expectations from host-

parasite theory. In particular, our results highlight the need for increased consideration of 

multiple sources of selection and pleiotropy when studying evolution in natural contexts. 

 

Keywords: Relaxed selection, experimental evolution, rapid evolution, resistance, tolerance, 
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2.2 Introduction:  

Natural selection is the driving force behind adaptation in the wild (1). As such, 

environmental changes that alter the direction or strength of selection should immediately initiate 

adaptive evolution ï and a number of studies have confirmed that such ñcontemporary 

evolutionò can indeed occur on very short time frames (2). In a number of instances, 

environmental change can be so dramatic as to cause the emergence of a new selective factor or 

the removal of an existing selective factor. The first situation (emergence) would be expected to 

cause an evolutionary increase in the ability of affected populations to cope with the new 

challenge. For instance, several studies have documented evolutionary increases in the ability of 

formerly-naïve populations to cope with new contaminants (3), new prey (4), new competitors 

(5), or new parasites (6). The second situation (removal) would be expected to cause an 

evolutionary decrease in the ability of populations to cope with the now-absent challenge ï at 

least when that ability trades off with another fitness component or is sensitive to mutation 

accumulation (7). Although the loss of a selective factor is less often studied than the gain of a 

selective factor, cases have been documented of evolutionary decreases in the ability of 

populations to cope with recently-removed contaminants (8) or predators (9). In the present 

study, we provide a counter-example from a host-parasite system, where removal of a selective 

pressure caused a rapid evolutionary increase in the ability to cope with a now-absent pressure. 

This finding invites a re-examination of the above tenets and points to the need for new theory 

and experiments. 

Evolutionary models of resistance (the hostôs ability to reduce its parasite load) predict 

that increases in parasite-induced mortality should drive the evolution of increased resistance in 

the host population ï because individual hosts that are better able to avoid, control, or clear 
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parasites gain higher lifetime reproductive success (10, 11). This expectation has been supported 

in laboratory studies on bacteria (e.g. 12) and non-vertebrate organisms (e.g. 13), as well as in 

comparative field studies (e.g. 14). On the flip-side, theoretical studies suggest that decreases in 

parasite-induced mortality and morbidity should drive the evolution of decreased resistance ï 

because investing resources in resistance comes at the expense of investment in other fitness-

related traits (10, 11). Supporting these ideas, resistance-fecundity trade-offs have been 

documented in many organisms (e.g. 15). The handful of studies that have directly tested for the 

evolution of resistance under relaxed selection, all laboratory-based, have found that removal of 

parasites led to no evolutionary change or the evolution of decreased resistance (16, 17, and 

references within). However, planned experimental evolution studies that reduce or remove 

parasite loads have not been performed in nature ï and yet this is the context where inference is 

most critical because other environmental factors could modify evolutionary responses to 

changes in parasitism. 

We used Trinidadian guppies to investigate the evolution of resistance to an ectoparasite 

(Gyrodactylus spp.) after that parasite had been eliminated in nature. Gyrodactylus spp. are 

directly transmitted parasites that reproduce and browse on the skin of guppies (18). 

Furthermore, gyrodactylids have important fitness consequences for their guppy hosts ï they 

cause high levels of mortality in both laboratory (19) and field (20), are the most prevalent 

macroparasite in the wild (21), affect mate choice (22), and cause lesions that can serve as entry 

points for secondary fungal and bacterial infections (23).Although the mechanisms of resistance 

to Gyrodactylus are still not fully characterised (24), involvement of the immune system is 

inferred from experiments on salmonids where macrophages produce Interleukin 1ɓ which 

stimulates mucus production and Complement factor 3 which binds to and kills the parasite (24). 
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Guppies show heritable (25) as well as a non-heritable (26) components of resistance, and those 

individuals that survive infection express acquired resistance upon challenge infection(27). Since 

Gyrodactylus are easily visible using a dissecting scope, repeated parasite counts can provide 

appropriate quantitative data throughout the course of an infection (24) and this is the most direct 

method to assess the host ability to control parasite numbers. Gyrodactylus load on individual 

guppies is known to vary both within and among populations, and this variation is attributed to 

variation in host resistance (19) particularly when infections occur in isolated hosts raised in 

common garden. In this sense, fish with fewer parasites or fish on which the parasites have a 

slower growth rate are taken to be more resistant.  

Guppies from a naturally infected population in the Guanapo River (ñsourceò) were 

collected, treated to remove their gyrodactylids, and introduced into four previously guppy-free 

tributary streams in the same river. After one and two years, fish were collected from the source 

and introduction populations, bred to a second generation under common garden in the 

laboratory, infected with Gyrodactylus turnbulli, and the exponential increase (and decline) of 

the parasite population on the skin of each isolated fish was monitored for 24 days to assess their 

resistance to the parasite. We predicted that removal of Gyrodactylus spp in the field would lead 

to the evolution of decreased resistance to that parasite. Contrary to expectations from theory 

(10, 11) and laboratory-based experimental evolution studies (16, 17), the introduced guppy 

populations were found to have rapidly and repeatably evolved increased resistance to the now-

absent parasite. 
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2.3 Materials and methods: 

Field introductions 

The guppy introductions were carried out as part of a US National Science Foundation Frontiers 

in Integrative Biological Research (FIBR) project led by D. Reznick. Guppies were captured as 

juveniles from the Guanapo ñsourceò population (10Á 38ǋ 23ǌN, 61Á14ǋ54ǌW and 10Á 39ǋ 14ǌN, 

61Á15ǋ 18ǌW) and held in a laboratory in Trinidad. They were quarantined in aquaria and treated 

with Fungus Eliminator (Jungle Labs, Cibolo, USA), Clout (Sentry AQ Mardel, Omaha, USA), 

and commercial forms of erythromycin and monocyclene (Maracyn and Maracyn Two ïSentry 

AQ Mardel, Omaha, USA). These treatments remove parasites, including Gyrodactylus, and all 

fish were monitored to ensure that they were in good health. Approximately 40 males and 40 

females were then released into each ñintroductionò site. In March 2008, fish were introduced 

into two Guanapo tributaries (Lower Lalaja and Upper Lalaja) (Fig.2.1). In April 2009, fish were 

introduced into two additional Guanapo tributaries (Taylor and Caigual) (Fig.2.1). Owing to 

physical barriers such as waterfalls, all introduction sites lacked dangerous predatory fishes (they 

were considered low predation) and did not have resident guppy populations. These sites also 

lacked Gyrodactylus parasites at the time of the introduction (owing to the absence of their 

guppy hosts) and throughout the course of this study - no parasites have been observed on the 

fish captured from these sites (F.D. Pers. Obs. and D. Reznick Pers. Comm.). In addition, the 

introduction sites also differed from the source by having more closed canopies. All introduction 

sites are reasonably similar in the above mentioned properties, except that two introductions sites 

(Upper Lalaja and Caigual) have more open canopies, therefore higher productivity, due to 

experimental canopy thinning (approximately 4% thinning) (28).  
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Laboratory breeding 

To assess the evolution of resistance to Gyrodactylus parasites following removal from 

parasitism, guppies were collected by the FIBR team from the Guanapo source population and 

from the introduction sites in April 2009 (the first two introduction sites ï Lower and Upper 

Lalaja) and April 2010 (all four introduction sites) (Fig.2.1). The 2009 collection was thus of fish 

that had been evolving at the introduction sites without parasites for one year, which corresponds 

to approximately four guppy generations (29). The 2010 collection was of fish that had been 

evolving at the introduction sites without parasites for one year (Taylor and Caigual ï four guppy 

generations) and two years (Lower Lalaja and Upper Lalaja ï eight guppy generations). 

All collected fish were treated with Fungus Eliminator, Clout, Maracyn, and Maracyn 

Two, transferred to Colorado State University (C. Ghalambor laboratory) and raised to maturity 

following standard protocols (30) (high food treatment only). To eliminate differences driven by 

phenotypic plasticity and maternal effects, the collected guppies were bred without parasites 

under common-garden conditions in the laboratory to generate F2 guppies (31). For the 2009 

collections, offspring from field-collected mothers were used to create 15 Guanapo (source) 

families, 15 Lower Lalaja (introduction) families, and 14 Upper Lalaja (introduction) families 

(See Appendix 2.A1 in Electronic Supplementary Materials). For the 2010 collections, offspring 

from field-collected mothers were used to create 14 Guanapo (source) families, 10 Lower Lalaja 

(introduction) families, 5 Upper Lalaja (introduction) families, 10 Caigual (introduction) 

families, and 11 Taylor (introduction) families (Appendix 2.A1). F1 females were mated with 

multiple F1 males from different families descended from the same collection to generate F2 

offspring. Fish from the 2009 collections were transferred to McGill University in the F2 
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generation, whereas fish from the 2010 collections were transferred to McGill University in the 

F1 generation and were there bred to form the F2 generation. 

 

Laboratory infections 

All infection trials were performed at McGill University in flow-through systems 

(Aquaneering Inc., San Diego, USA) that standardized water quality and temperature (26°C). 

Filters prevented movement of parasites between tanks. Females rather than males were used for 

the present study because [1] females have a broader range of peak Gyrodactylus loads (19) that 

allows better detection of statistical differences, [2] inferences about the impact of parasites on 

female fitness are more straightforward (male guppies can continue to sire offspring after their 

death ï owing to sperm storage (32)), and [3] the consequences of females for population 

dynamics are direct (population growth is limited by female ï not male ï reproductive output). 

For the 2009 collections, F2 fish were infected at 12 weeks of age or older and all females 

derived from each population were from different family lines. For the 2010 collections, F2 fish 

were infected at 12 weeks of age and up to three females were used per family line (Appendix 

2.A1). These small differences in protocol between the 2009 and 2010 collections were the result 

of the different transfers (F2 fish versus F1 fish) from Colorado State University. Therefore our 

inferences are based on comparisons between populations for a given collection year rather than 

between years. 

Each fish was isolated in a 1.8L tank one week prior to being infected and was fed 10 

µl/day of fish food paste (Tetramin Tropical Flakes) until the end of the experiment. On the day 

of infection, each fish (n = 173) was anaesthetized in MS-222 (buffered to a neutral pH with 

NaHCO3), weighed twice to the nearest 0.0001g in a container with 20 ml of water, 
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photographed (for size measurements), and manually infected. To initiate an infection, we 

removed a scale with G. turnbulli from a donor fish and allowed the parasite to transfer to the 

recipient hostôs caudal fin (18) until two parasites were attached. We used G. turnbulli from an 

isogenic strain initially isolated from guppies obtained from a Montréal pet store in 2008. The 

use of this strain, and the fact that we maintained it on feeder guppies (descendants of pet store 

guppies held in our lab), ensured that all fish were infected with the same strain of parasites and 

that none of the guppy populations had an evolved history with the strain. Although testing with 

additional parasite strains would be interesting and potentially informative, we did not do so 

because previous work suggests that population differences in resistance are maintained across 

diverse parasite strains (19). Every two days for 24 days, or until death, each fish was 

anaesthetized in MS222 and its parasites were counted using a dissecting scope at 18x 

magnification, a standard procedure in guppy-Gyrodactylus studies. We also performed control 

trials with sham-infected fish (n = 66) that provided baseline values for parasite induced 

mortality (Appendix 2.A1) and for initial size-weight regressions.  

 

Resistance and tolerance 

As a measure of guppy size, we used standard length (SL) ïthe distance from the mouth 

of the fish to the end of the caudal peduncle. SL was measured to the nearest 0.1 mm from 

photographs taken with a Nikon D90 camera at the start of infection. On day 10 of infection, we 

twice weighed all fish to the nearest 0.0001 g inside a container with water to avoid desiccation 

of the parasites, but we did not photograph the fish for size measurements, as this would have 

involved taking the fish outside of water. Individual SL and average mass were used to calculate 

relative condition index (Kn) at the start and on day 10 of infection, following Le Cren (33). Kn 
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estimates condition based on a log-mass to log-SL least squares regression of all fish (infected 

and sham-infected), where residuals indicate the amount by which an individual is above (>1) or 

below (<1) average condition. Therefore Kn calculations for day 10 are based on the log-SL of 

the fish at day 0, under the assumption that change in SL would be minor during this period. In 

addition, no differences in guppy relative condition index (33) were evident among the 

populations immediately before infection: ANOVA 2009 (F2,41=0.137, p=0.872) and ANOVA 

2010 (F4,124=1.92, p=0.111). 

We derived three metrics of resistance for each infected individual from the parasite data 

collected on alternating days: peak load, load on day 10, and Gyrodactylus intrinsic rate of 

increase (r). These measures are commonly used in studies involving Gyrodactylus (27, 34), and 

provide a summary of the infection dynamics and the host ability to fight infection. Peak load 

was calculated as the highest number of parasites an individual carried at a given day throughout 

infection or before they died, but since the day at which peak load is reached varied from one 

individual to the other we included a measure of parasite load at the same point in time for all 

individuals. Load on day 10 is the number of parasites each individual carried ten days after 

being infected with two G. turnbulli flukes. Day 10 was chosen as the reference day because fish 

mortality started to increase after this point (Appendix 2.A1). We estimated r as the slope of the 

regression of ln-transformed G. turnbulli load versus time, measured every other day from the 

start of infection to day 10. As a measure, r integrates over time the demographic response of the 

parasite population to its host-environment, where higher r represents lower host resistance. 

To measure tolerance (the hostôs ability to reduce the damage caused by a given load of 

parasites) we used two metrics that represent how populations differ in the relationship between 

Gyrodactylus numbers and the effect they have on guppy fitness. We compared if [1] the effect 
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of peak parasite load on guppy survival throughout the experiment, and [2] the effect of the 

cumulative Gyrodactylus load for the first ten days of infection on the change in relative 

condition index of guppies on those ten days, was different between populations (statistical 

interaction between [1] population and peak load, and [2] population and cumulative load). Since 

guppy deaths often happened at times when there was no personnel at the laboratory, deaths that 

occurred between alternating count days were recorded as the day of last parasite count. 

 

Analysis 

Although guppy size differed between the source and introduced populations at the start 

of experiment in the 2009 sample (ANOVA: F2,41=3.873, p=0.0288), these differences were 

minor and no differences were evident in the 2010 sample (ANOVA: F4,124=1.996, p=0.0992; see 

Appendix 2.A2). For these reasons, and to maximize degrees of freedom, body size is not 

included in the statistical models we report here, although redoing the analysis with SL as a 

covariate (not shown) did not alter our interpretation. 

To test whether the population from which the fish had been collected had an effect on 

day of peak parasite load and parasite load on day 10 of infection, we used generalized linear 

models (GLMs) with negative binomial distributions and a Log link function as data were over-

dispersed and did not fit assumptions of normality (Shapiro-Wilk normality test). Similar results 

(not shown) to those of load on day 10 where obtained when we analysed load on day 8 and on 

day 12. Given our interest in whether or not each introduction population differed from the 

source population, planned contrasts were performed separately for each source-introduction pair 

in each collection. Alpha levels for multiple comparisons for each response variable were 

evaluated using false discovery rate corrections. We used ANOVAs to test whether parasite 
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intrinsic rate of increase (r) differed among populations; Tukey HSDs were used for post-hoc 

tests. Finally, we used a Cox proportional hazard model to determine whether the effect of peak 

load on fish survival was affected by population, and an ANCOVA to test whether the effect of 

cumulative load on change in Kn was affected by population. All analyses were performed using 

R Language and Environment for Statistical Computing (http://www.r-project.org/). Level of 

significance was set at p < 0.05.  

 

2.4 Results: 

Gyrodactylus turnbulli successfully established and increased in abundance on all 

laboratory fish exposed to the parasite, with the exception of two Guanapo source fish from the 

2009 collection and one Lower Lalaja fish from the 2010 collection (not included in analyses). 

Subsequent Gyrodactylus-induced mortality was high: 70% of all infected fish died before the 

end of the experiment whereas sham-infected control fish experienced only 3% mortality. For the 

2009 field collections, guppy survival was not different between the source population and the 

introduced populations (Table 2.1). For the 2010 field collections, guppy survival was 

significantly higher for two of the four introduced populations (Table 2.1ïLower Lalaja and 

Caigual) than for the source population. Across individuals, guppy survival was negatively 

associated with parasite load in 2009 but not 2010 (Table 2.1). 

For all of the guppy populations, Gyrodactylus turnbulli infection showed a typical phase 

of rapid increase that decelerated until reaching a peak and finally crashed (Fig.2.2A, 2.2C, 

2.2E). Starting at day 8 of infection, average parasite load began to differ noticeably among the 

populations. We used three common and robust metrics to quantify this variation in guppy 

resistance to G. turnbulli: peak load, load on day 10 and the parasite intrinsic rate of increase (r). 

http://www.r-project.org/
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Relative to the source population, both peak load and load on day 10 were significantly lower 

(and resistance therefore higher) for [1] two of the four introduced populations (Upper Lalaja and 

Taylor) studied after one year of evolution in nature, and [2] both introduced populations (Upper 

Lalaja and Lower Lalaja) studied after two years of evolution in nature (Table 2.2; Fig.2.2). In 

the first case, another of the introduced populations (Caigual) also showed evidence of increased 

resistance based on load on day 10. Relative to the source population, r was significantly lower 

(and resistance therefore higher) for [1] one of the four introduced populations (Taylor) after one 

year of evolution in nature (Fig.2.2F; Table 2.3), and [2] both of the introduced populations after 

two years of evolution in nature (Fig.2.2D; Table 2.3). In summary, none of the guppy 

populations released from parasite (Gyrodactylus) pressure evolved decreased resistance to that 

parasite: instead, most evidence pointed toward a rapid evolution of increased resistance. 

The evolution of increased resistance in the absence of a parasite might reflect a 

correlated response to the evolution of decreased tolerance (the hostôs ability to reduce the 

damage caused by a given number of parasites). We measured tolerance as a populationôs slope 

of survival in relation to peak parasite load (higher survival for a given parasite load would mean 

increased tolerance) and as change in relative condition index in relation to cumulative parasite 

load in the first 10 days of infection (higher condition for a given parasite load would mean 

increased tolerance). Using these metrics, no evidence was found of the evolution of decreased 

tolerance: relative to guppies from the source population, guppies from the introduced 

populations did not have lower survival rates for a given parasite load (Table 2.1) or lower 

condition (see Appendix 2.A3). If anything, the trend was toward increased tolerance in the 

introduced populations (Fig.2.3A). Furthermore, we found no evidence of a negative association 

between measures of resistance and measures of tolerance (Fig.2.3A and 2.3B) ï as would have 
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been expected if the evolution of decreased tolerance caused a correlated response toward 

increased resistance.  

 

2.5 Discussion: 

We found that guppies rapidly and repeatably evolved increased resistance to a common 

(21) and deleterious parasite (19, 20) (Gyrodactylus spp) after that parasiteôs experimental 

removal in nature. This robust result runs counter to theoretical expectations (10, 11) and to a 

number of laboratory-based experimental evolution studies (16, 17). It might at first be tempting 

to think that our results could be explained quite simply if resistance was not costly. If this was 

the case, however, we would expect no evolution of resistance when the parasite was removed ï 

rather than an increase in resistance. We therefore here ask what mechanisms could explain why 

the removal of a parasite from populations in nature led to the evolution of increased rather than 

decreased resistance? Consideration of these mechanisms leads to new insights into how host-

parasite relationships evolve and how these interactions can best be uncovered. 

We start by considering possible methodological artefacts. First, perhaps decreased 

resistance did evolve in the introduced populations, which led to increased mortality of the least 

resistant fish when exposed to parasites in the laboratory, and as a consequence high parasite 

loads could not build up, which made it appear as if resistance was high. In the laboratory 

experiments, however, survival was not lower for the introduced populations relative to the 

source population (Table 2.1 and Appendix 2.A1), and so lower parasite loads in the former 

cannot be explained by increased mortality. Second, perhaps fish from the introduced 

populations were smaller or in worse condition (33) than those from the source population, 

which could constrain the spread of parasites on the former. At the start of our laboratory 
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experiments, however, guppies from the introduced populations were not smaller or in lower 

condition than those from the source population (see Methods). Exclusion of these potential 

methodological artefacts led us to consider biological mechanisms for why parasite removal in 

nature leads to the evolution of increased resistance to that parasite. 

One possible biological mechanism is that parasite removal selects more strongly for 

decreased tolerance (the hostôs ability to reduce the damage caused by a given number of 

parasites (35)) than it does for decreased resistance, with the resulting evolution of reduced 

tolerance then driving the evolution of increased resistance as a pleiotropic or functional by-

product. This idea seems reasonable on the surface given that evolutionary models (10, 11) and 

empirical evidence (35) point to a trade-off between resistance and tolerance. However, our 

analyses yielded no evidence of the evolution of decreased tolerance: relative to the source 

population, guppies from the introduced populations did not have higher mortality or lower 

condition for a given parasite load. Furthermore, we did not detect a negative relationship 

between resistance and tolerance, suggesting the absence of a trade-off, at least at the phenotypic 

level, that would lead to pleiotropic effects. Our finding of the evolution of increased resistance 

in the introduced parasite-free populations is therefore not due to the evolution of decreased 

tolerance. 

A second possible biological mechanism is that a difference in food resources influenced 

selection on resistance. In particular, the introduction sites had less open forest canopies ï and 

therefore lower resource levels ï than did the source site, and previous research on guppies has 

suggested that resource levels contribute to the evolution of several guppy traits (36). Moreover, 

a number of studies have shown that resource levels can influence the evolution of parasite 

resistance (37), and can directly influence guppy resistance (26). In our study, however, two lines 
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of evidence suggest that different resource levels cannot explain the evolution of increased 

resistance in the introduced populations. First, one would expect lower resource levels to select 

for decreased resistance (37), not the increased resistance that we observed, since selection on 

more efficient use of resources should be stronger. Second, the introduction sites differed from 

each other in canopy openness owing to experimental canopy thinning at two of the sites (Upper 

Lalaja and Caigual) (28, 38), but we did not find consistent differences in resistance between the 

sites with and without thinning (see Appendix 2.A4). 

A third possible biological explanation relates to potential interactions between predation 

and parasitism. This hypothesis deserves special consideration because [1] interactions between 

selection by predators and selection by parasites have been reported in other systems (39, 40), [2] 

the introduced populations were not only removed from parasites but also underwent a dramatic 

shift in predation intensity (from high to low), [3] guppies show many adaptive responses to 

different predation regimes (41), that can evolve rapidly in experimental introductions (31), and 

[4] guppies from the introduced populations show rapid evolution of certain life history traits 

(38). In particular, when guppies from high-predation environments are introduced into low-

predation environments, the resulting increase in life expectancy causes the rapid evolution of 

life-history traits that convert a formerly ñfastò lifestyle into a ñslowò lifestyle (31). Increased 

life expectancy should also provide benefits for increased investment into parasite defense, as 

has been reported in a number of studies (42, 43). Although this logic is normally applied to 

situations where a source of extrinsic mortality changes but the parasite remains present, we 

suggest that it can be modified to consider the situation when parasites are removed. This 

expanded argument starts from the common observation that reproductive effort and parasite 

defense are negatively correlated (44), such that the evolution of one should cause a correlated 
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response in the other (45). In this situation, the evolution of decreased allocation to reproduction 

that occurs when guppies are introduced from a high-predation to a low-predation environment 

(31) could cause increased investment into parasite defence. Stated another way, relaxed 

selection for defence against parasites (owing to parasite removal) can be overpowered by the 

evolution of a slower life history (owing to predator removal) that, through pleiotropic or 

functional associations, leads to increased resistance. We advance this hypothesis as the most 

plausible explanation for our observations as it is the only one standing after a critical 

confrontation with our own data. To positively establish a causal relationship between life 

history and resistance evolution in our study system, further experimentation will be required. 

As surprising as our results might initially seem, we can find additional support for them 

in several observations from previous studies. First, many low-predation guppy populations are 

not parasitized by Gyrodactylus or, if they are parasitized, have low parasite loads (46). Second, 

guppies from Gyrodactylus-free sites often have high frequencies of alleles (47) that are 

associated with elevated Gyrodactylus resistance in laboratory trials (as measured by load over 

the first ten days of infection) (25). Third, high-predation populations, which tend to show higher 

parasite loads, do not show greater resistance to Gyrodactylus when tested in mesocosms (48). In 

aggregate, these observations suggest that low-predation populations, and populations with few 

or no parasites, can still mount effective parasite defence and can perhaps even resist 

colonization by parasites. In summary, our study provides clear experimental evidence for a 

pattern of evolution unpredicted by theoretical models and laboratory studies that is nevertheless 

consistent with observations from natural populations and for which a plausible biological 

mechanism can be advanced. 
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2.6 Implications: 

Current empirical understanding of the evolution of defence against parasites is based 

mainly on two approaches. First, experimental evolution studies in the laboratory manipulate 

parasite presence while intentionally controlling or removing variation in other environmental 

factors. Evolution in nature, however, occurs in the context of these other factors, which might 

strongly modify evolutionary responses to parasitism (49). Second, field surveys intentionally 

incorporate this natural complexity but are rarely able to unambiguously disentangle cause and 

effect (31). The bridge between these two approaches is to experimentally manipulate infection 

levels in nature, which thus informs how changes in parasitism influence defence within the 

context of natural variation in other environmental factors. Using this bridge, we documented 

evolutionary patterns inconsistent with theoretical models and laboratory experiments: that is, the 

removal of an important parasite led to the rapid evolution of increased resistance to that same 

parasite. This result suggests that existing theory and laboratory experiments might need to be 

modified ï and we propose that a good starting point is to include a consideration of selection 

acting on life history traits that are correlated with resistance. 

Our results could have broad implications. As one example, humans have created many 

situations in which selection by parasites has been reduced through use of antibiotics, antivirals, 

pesticides, and herbicides, as well as through improved hygiene. As another example, many 

cultured organisms and endangered species are intentionally raised in the absence of a number of 

their natural pathogens. Finally, invasive species are often released from a number of their 

natural enemies (50). In the rare instances when consideration has been given to how resistance 

to pathogens might evolve following such changes, expectations have followed the classical 

interpretation that resistance should decrease. Our results challenge this simple and standard 
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interpretation and could therefore have fundamental implications for disease control, 

conservation, and invasion biology. More replicated experimental manipulations of parasite 

pressure in nature are urgently needed. 
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Table 2.1: Guppy survival as a measure of tolerance.  

Collection Coefficient Estimate SEM Z-value P (>|z|) 

      
2009, One  Lower Lalaja -1.31 1.38 -0.95 0.34 

Year After  Upper Lalaja -1.19 1.63 -0.73 0.47 

Introduction Load at Peak 0.01 0.003 2.56 0.01 

 Peak ×Lower  0.002 0.003 0.5 0.62 

 Peak ×Upper 0.01 0.01 1.08 0.28 

      
2010, Two  Lower Lalaja -1.32 0.59 -2.24 0.03 

Years After Upper Lalaja -0.4 0.65 -0.61 0.54 

Introduction Load at Peak -0.001 0.001 -0.92 0.36 

 Peak ×Lower  0.003 0.003 1.23 0.22 

 Peak ×Upper <0.001 0.004 0.12 0.91 

      
2010, One Caigual -1.02 0.51 -1.99 0.046 

Year After  Taylor -0.57 0.57 -1.01 0.31 

Introduction Load at Peak <-0.001 0.001 -0.79 0.43 

 Peak ×Caigual 0.002 0.002 1.11 0.27 

 Peak ×Taylor 0.001 0.003 0.42 0.68 

      
Cox proportional hazards results for survival until end of experiment with ñday of deathò as a 

response variable, and ñpopulation of originò and ñparasite peak loadò as explanatory variables. 

Values are for individuals of a given introduction site relative to the source population. Higher 

tolerance is indicated by higher survival for a given parasite load at peak (i.e. significant 

interaction coefficient). 

 

  



68 

  

Table 2.2: GLMs for Gyrodactylus turnbulli  load on Poecilia reticulata.  

Collection Response variable Coefficients Estimate SEM Z value P (>|z|) 

       
2009, One Load Day 10 Intercept (source) 4.94 0.15 32.3 <0.001 

Year After  Lower Lalaja -0.33 0.22 -1.5 0.13 

Introduction  Upper Lalaja -0.62 0.22 -2.8 0.005 

       
 Peak Load Intercept (source) 5.52 0.16 34.7 <0.001 

  Lower Lalaja -0.36 0.23 -1.6 0.106 

  Upper Lalaja -0.81 0.23 -3.5 <0.001 

       
2010, Two  Load Day 10 Intercept (source) 4.91 0.09 53.4 <0.001 

Years After  Lower Lalaja -0.55 0.14 -3.9 <0.001 

Introduction  Upper Lalaja -0.46 0.15 -3 0.003 

       
 Peak Load Intercept (source) 5.51 0.11 49.5 <0.001 

  Lower Lalaja -0.66 0.17 -3.8 <0.001 

  Upper Lalaja -0.75 0.19 -3.9 <0.001 

       
2010, One Load Day 10 Intercept (source) 4.91 0.09 55.8 <0.001 

Year After  Caigual -0.26 0.13 -2 0.047 

Introduction  Taylor -0.36 0.14 -2.6 0.009 

       
 Peak Load Intercept (source) 5.51 0.12 46.6 <0.001 

  Caigual -0.18 0.17 -1.04 0.3 

  Taylor -0.48 0.18 -2.58 0.01 

       
Generalized linear model results for parasite load at the tenth day of experimental infection and 

for peak load (integer variables with a negative binomial distribution) of Gyrodactylus turnbulli 

on Poecilia reticulata for each year of collection. Coefficient estimates are for individuals 

derived from each introduction site relative to the individuals derived from the source 

population. 
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Table 2.3: ANOVAs on Gyrodactylus turnbulli  intrinsic rate of increase (r).  

Collection df SS Mean Sq F P-value Difference§ 

       
2009 ï One year* 2 0.01451 0.007256 1.798 0.179 - 

2010 ï Two yearsÀ 2 0.04885 0.024427 8.984 <0.001 LL&UL<S  

2010 ï One yearÿ 2 0.02656 0.013281 5.171 0.008 T<S 

       
ANOVA results for parasite intrinsic rate of increase (r) between experimental day 0 and10 with 

population (source and introductions) as factor. Abbreviations for population names: Guanapo 

source (S) population, and Lower Lalaja (LL), Upper Lalaja (UL), Caigual (C) and Taylor (T) 

introduction populations.* S, LL and UL populations derived from field in 2009. 

À S, LL and UL populations derived from field in 2010. 

ÿ S, T and C populations derived from field in 2010. 

§ Differences between populations in significant models were detected through a Tukey HSD 

post-hoc test.   
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Figure 2.1: Experimental design overview. Guppy introductions were made from a source 

population in the Guanapo River in 2008 to the guppy-free Lower Lalaja and Upper Lalaja sites 

and in 2009 to the guppy-free Taylor and Caigual sites. In 2009 and 2010 guppies collected from 

each site (red dots), were bred for two generations in the laboratory and the F2 fish were used in 

experiments. See methods for details.  
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Figure 2.2: Resistance of female guppies (Poecilia reticulata) to parasites (Gyrodactylus 

turnbulli ). Resistance measures based on parasite load on each experimental day (A, C, E) and 

regression-based estimates of parasite intrinsic rate of increase (r) covering experimental days 0 

through 10 (B, D, F). High parasite load is indicative of low resistance. The data (means ±SEM ï 

A, C, E; median and 10, 25, 75, 90 percentiles ï B, D, F) are for (A, B) Guanapo source, Lower 

Lalaja, and Upper Lalaja fish collected in 2009, one year after introduction ; (C, D) Guanapo 

source, Lower Lalaja, and Upper Lalaja fish collected in 2010, two years after introduction ; and 

(E, F) Guanapo, Caigual, and Taylor fish collected in 2010, one year after introduction.  
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Figure 2.3: Evolution of guppiesô resistance and tolerance to their Gyrodactylus parasites. 

(A) Difference in average G. turnbulli peak load (a measure of resistance) vs. average difference 

in survival (day of death ï a measure of tolerance) and (B) average  cumulative parasite load 

from day 0 to 10 (resistance) vs. change in relative condition index (Kn) between day 0 to 10 of 

infection (tolerance). All differences (Dparasite load, Dsurvival, DKn) are relative differences 

between the Lower Lalaja (LL), Upper Lalaja (UL), Taylor (T) and Caigual (C) introductions, 

and the Guanapo source population (S), from the 2010 collection. Non-zero values suggest 
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evolution in a given direction. Quadrants I and III indicate a negative correlation (trade-off) 

between resistance and tolerance. Error bars are ±1 SEM. 
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Appendix 2.A 

Experimental elimination of parasites in nature leads to the evolution of increased 

resistance in hosts 

 

Felipe Dargent, Marilyn E. Scott, Andrew P. Hendry and Gregor F. Fussmann (2013). 

Experimental elimination of parasites in nature leads to the evolution of increased 

resistance in hosts. Proceedings of the Royal Society B. (280) 1773. DOI: 

10.1098/rspb.2013.2371  
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Appendix 2.A1: Summary table of results and environmental characteristics (see Text, 2.3 Materials and methods).  

SL = Fish size measured as standard length. Kn =  Relative condition index (Le Cren 1951). Survival = individuals alive at end of 

experiment. For Sham n = number of sham-infected fish, each individual was derived from an independent family. Change in Kn to 

day 10 = change in Kn from the start of infection until day 10. 

  

 2009 Collection 2010 Collection 

Population Guanapo 

(Source) 

Lower Lalaja 

(Introduction) 

Upper Lalaja 

(Introduction) 

Guanapo 

(Source) 

Lower Lalaja 

(Introduction) 

Upper Lalaja 

(Introduction) 

Taylor 

(Introduction) 

Caigual 

(Introduction) 

         Generation at time of 

collection 

- 4 4 - 8 8 4 4 

n  15 15 14 34 24 18 24 29 

n family 15 15 14 14 10 6 11 10 

SL (SEM) in mm 20.2 (0.4) 21.5 (0.2) 21.7 (0.6) 18.1 (0.3) 18.9 (0.5) 17.3 (0.6) 17.4 (0.6) 17.7 (0.4) 

Initial Kn
 
 (SEM) 0.984(0.03) 1.002(0.02) 0.999(0.02) 1.034 (0.02) 0.991 (0.02) 0.995 (0.02) 1.022 (0.01) 0.988 (0.02) 

Mean peak load (SEM) 248.6 (34) 172.7 (41.7) 110.5 (15.3) 247.6 (33) 128.3 (15.4) 117.2 (16.4) 154 (19.8) 206.4 (26.5) 

Survival n (%) 6 (40) 12 (80) 10 (71.4) 2 (5.9) 7 (29.2) 4 (22.2) 6 (25) 5 (17.2) 

Sham n (% Survival) 5 (100) 7 (100) 7 (100) 14 (92.9) 8 (100) 6 (100) 9 (100) 10 (90) 

Change in Kn to day 10 - - - 0.037 (0.02) 0.027 (0.02) 0.018 (0.03) 0.09 (0.03) 0.068 (0.02) 

          Environmental Characteristics 

  Predation High Low Low High Low Low Low Low 

Productivity High Low Low-Med High Low Low-Med Low Low-Med 

          Individuals alive 

  Day 8 (%) 15 (100) 15 (100) 14 (100) 34 (100) 24 (100) 18 (100) 24 (100) 29 (100) 

Day 10 (%) 15 (100) 15 (100) 14 (100) 30 (88.2) 22 (91.7) 17 (94.4) 22 (91.7) 26(89.7) 

Day 12 (%) 15 (100) 15 (100) 14 (100) 21 (61.8) 21 (87.5) 13 (72.2) 18 (75) 23 (79.3) 

Day 14 (%) 15 (100) 14 (93.3) 13 (92.9) 13 (38.2) 15 (62.5) 9 (50) 13(54.2) 18 (62.1) 
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Appendix 2.A2: F2 fish size (mm) at the start of experimental infections. We measured the 

standard length SL (in mm) of experimentally infected individuals. At the time of experimental 

infection, F2 fish derived from the 2009 collection were of various ages and generally older than 

F2 fish derived from the 2010 collection, which explains the difference in SL between years. 

Fish derived from the 2010 collection were all measured and infected at 12 weeks of age. This 

explains why there is less variation in SL; differences in size are expected to be genetic. Site 

abbreviations: Lower Lalaja (LL), Upper Lalaja (UL), Taylor (T) and Caigual (C) introductions, 

and the Guanapo source population (S). 
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Appendix 2.A3: Tolerance measured as change in relative condition index. 

Collection Independent variable df SS Mean Sq F Pr (>F) 

       
2010, Two  Population 2 0.0008 0.0004 0.046 0.96 

Years After Cum Load at Day 10 1 0.0072 0.0072 0.862 0.36 

Introduction Population × Cum Load at Day10 2 0.0187 0.0094 1.123 0.33 

 Residuals 63 0.5250 0.0083   

       
2010, One Population 2 0.0234 0.0116 1.374 0.25 

Year After Cum Load at Day 10 1 0.0361 0.0361 4.249 0.04 

Introduction Population × Cum Load at Day10 2 0.0462 0.0231 2.714 0.07 

 Residuals 71 0.6038 0.0085   

 

ANCOVA results for change in relative condition index (Kn) between day 0 and 10 as the 

response variable, ñpopulation of originò as factor and ñcumulative parasite load on day 10ò 

(Cum Load at Day 10) as a covariate. Base data for the change-in-Kn analysis were not measured 

for the 2009 collection. Higher tolerance is indicated by a lower decrease in relative condition 

index after ten days of infection for a given cumulative parasite load during the same time frame 

(i.e. significant interaction coefficient). 
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Appendix 2.A4: The relation of resistance to environmental characteristics (productivity, 

predation). Average peak parasite load (±SEM), population productivity and predation 

characteristics for the Lower Lalaja (LL), Upper Lalaja (UL), Taylor (T) and Caigual (C) 

introductions, and the Guanapo source population (S), from the 2010 collection. 
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CONNECTING STATEMENT 

Thus far I have shown that females have rapidly and repeatably evolved increased 

resistance to Gyrodactylus after experimental removal of the parasite in nature. Evolutionary 

biologists and ecologists often tend to think that traits shared by both sexes should diverge in a 

similar manner from the ancestral population traits when faced with a new environment. This 

line of thought perhaps has its basis in the common observation that it is difficult to imagine two 

organisms more genetically similar than males and females within a population. After being 

released from Gyrodactylus, the simplest expectation, all else being equal, is that male and 

female guppy resistance will diverge in parallel from the ancestral Guanapo source population. 

Yet, all else is not equal. Male and female guppies are dimorphic in a series of secondary sexual 

traits that could influence resistance to Gyrodactylus. In chapter 3 I use the guppy-Gyrodactylus 

system to quantify the difference in evolutionary response of males and females from the same 

species to a common selective environment. 
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CHAPTER 3 

Parting ways: Parasite release in nature leads to non-parallel evolution of the sexes 

 

Felipe Dargent, Gregor Rolshausen, Andrew Hendry, Marilyn Scott and Gregor Fussmann. (in 

review). Parting ways: Parasite release in nature leads to non-parallel evolution of the 

sexes. Journal of Evolutionary Biology. 
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3.1 Abstract: 

Parallel evolution is considered to represent strong evidence for the deterministic action of 

natural selection. Recently, increased attention has been brought to the reality that populations in 

similar environments often differ substantially in adaptive traits (i.e., non-parallel evolution). We 

considered a related problem, the extent to which the sexes evolve similarly in response to the 

same shift in environmental conditions. Using replicate introductions in nature, we evaluated 

whether release from a key parasite (Gyrodactylus) produced a parallel evolutionary response in 

male and female guppies. After 4-8 generations of relaxed selection, guppies were collected from 

the ancestral and derived populations and bred in the laboratory to remove non-genetic effects. 

Guppies were infected with Gyrodactylus and infection dynamics were monitored. We found 

that, in the ancestral population, male guppies had higher resistance to Gyrodactylus than 

females, and that parasite release in the derived populations led to non-parallel evolution of the 

sexes: Males did not show much evolution of resistance, whereas females showed increased 

resistance. The end result was an evolutionary reduction of sexual dimorphism in resistance. We 

argue that previous selection for high resistance in males constrained further evolution of the trait 

(relative to females). 
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3.2 Introduction:  

Spatially segregated populations often experience distinct selective environments, which 

causes the adaptive divergence of traits that influence survival and reproduction (1, 2). When this 

divergence occurs in a similar fashion within independent evolutionary lineages, the outcome is 

often called ñparallelò or ñconvergentò evolution and is generally taken as strong evidence that 

natural selection has deterministically caused divergence (3-5). Recently, however, increasing 

emphasis has been placed on the reality that populations and species in similar environments 

often differ substantially in adaptive traits, suggesting a strong ñnon-parallelò or ñnon-

convergentò element of evolution in response to similar selection pressures (3, 6, 7). Potential 

reasons for these deviations from determinism include unrecognized differences in natural 

selection between seemingly similar environments, variation in sexual selection, and differences 

in genetic variation among populations (7). 

Although parallel and convergent evolution are typically considered in the context of 

populations or species, related questions surround adaptation of the two sexes (8, 9). On the one 

hand, males and females in a given population should experience a similar environment and 

share most of their genetic background ï suggesting they might adapt in a similar fashion. On the 

other hand, males and females can experience a given environment in different ways and do not 

share their entire genome ï suggesting they might adapt in different ways. Moreover, males and 

females express differences in a broad array of behavioral, morphological, and physiological 

traits ï some of which can be extreme (10-13). It thus seems reasonable that males and females 

will experience different selective pressures even when they share the same spatial location. 

Fitting this expectation, studies that have estimated selection separately for males and females 

often find large differences between the sexes (e.g., 14, 15). Given the wide range of possible 
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outcomes, we here sought to determine the extent to which males and females evolve similarly 

(parallel) or differently (non-parallel) in response to a similar shift in environmental conditions. 

The environmental shift we here consider is parasitism. Parasites are an important 

selective agent known to cause adaptive divergence between populations and species (16). For 

instance, populations that are more heavily parasitized often evolve towards increased resistance 

to parasites (17-19) ï presumably because parasites influence fitness by reducing survival (20), 

fecundity (21), or mating success (22). By contrast, populations that are less heavily parasitized 

often evolve towards reduced resistance (23) ï presumably because resistance mechanisms in the 

absence of parasites can reduce fitness through immunopathology (24, 25), physiological costs of 

maintenance of immune responses (26), or antagonistic pleiotropy such as trade-offs with 

fecundity (27). Of course, these examples  of the evolution of resistance under different parasite 

pressures are generalizations, and other studies also report unexpected evolutionary trajectories 

in response to a shift in parasite pressure (28). Given all this variation, parasites are an 

appropriate selective force for considering the differential responses of males and females to an 

environmental shift.  

Our main goal is to consider whether males and females from a common ancestral 

population evolve similarly or differently in response to a similar shift in parasite pressure. The 

answer is not obvious given that ï as introduced above ï a number of reasons exist why males 

and females might respond differently. On the one hand, males and females can be similarly 

influenced by parasites and the genes that influence resistance are often found on autosomes 

(29). These shared properties suggest that a shift in parasite pressure might lead to parallel 

evolution of the sexes. On the other hand, males and females often experience different parasite 

levels, have different costs of infection, and can have different costs of defense. For instance, 
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males and females often differ in their resistance to parasites (16, 30, 31), perhaps owing to [1] 

differences in body size (larger individuals have more parasites (32, 33)), [2] different exposure 

to parasites (34), [3] functional trade-offs between testosterone production and immune system 

function (35), or [4] differences in time and energy allocation budgets between sexual activities 

(i.e., courting, fighting) and resource acquisition (36). Any of these differences could mean that a 

similar shift in parasite pressure will  lead to non-parallel evolution of the sexes.  

 

The guppy-Gyrodactylus host-parasite system 

An excellent context to study sexual differences in evolutionary responses to parasites is 

represented by the Trinidadian guppy (Poecilia reticulata) ïGyrodactylus host-parasite system. 

The guppy is a sexually dimorphic poeciliid fish that is an important model for evolutionary 

studies. In particular, experimental introductions to novel environments in nature have frequently 

revealed the rapid parallel evolution of behavioral, morphological, and life-history traits (37, 38). 

The (mostly) host-specific monogenean worms Gyrodactylus turnbulli and Gyrodactylus 

bullatarudis are the most prevalent macroparasites of wild guppies (39). They attach to the scales 

of their host, where they give birth to flukes with fully developed embryos ñin-uteroò, and they 

are transmitted during host to host contact (40). These characteristics lead to exponential parasite 

population increases on individual guppies and epidemics in guppy populations (41)..  

The necessary elements for adaptation by guppies to Gyrodactylus have been 

demonstrated in previous work. First, Gyrodactylus are an important selective pressure: [1] they 

cause high mortality in the field (42) and the laboratory (43), [2] they cause lesions that can serve 

as entry points for bacterial and fungal secondary infections (44, 45), [3] they affect guppy mate 

choice (46-48), and [4] they influence the ability of guppies to maintain their position during 
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floods (42). Second, individual guppies differ in their ability to reduce or eliminate gyrodactylid 

infections (resistance) and this variation has genetic (49, 50) and non-genetic (51-53) 

components. As would be expected in the presence of these elements, guppy populations differ 

in their resistance to Gyrodactylus infection (54, 55) and in the MHC genes that influence this 

resistance (49, 56). However, although evidence exists that male and female guppies differ in 

their resistance to Gyrodactylus (55), it is not known how these differences might influence 

adaptive divergence between populations and the sexes. 

 

Our study 

Inferences regarding adaptive divergence in parasite resistance are usually based on field 

surveys (57, 58) or laboratory experiments (23, 59, 60). Although very informative, these 

approaches are limited in several respects. Field surveys are limited because [1] it is difficult to 

infer causation when the selective factor of interest is not experimentally manipulated, and [2] it 

is difficult to infer rates and directions of evolution when the ancestral state is uncertain. Insights 

from laboratory studies are limited because organisms are removed from the natural context, 

which might mean that the observed evolution will not reflect evolution in nature. The solution is 

to combine these two approaches through experimental manipulations in nature, which are rare 

in general (61) and apparently absent for evolutionary response to parasite pressure. Our study 

fills this gap by comparing guppies from a Gyrodactylus-present source population to their 

descendants from four independent Gyrodactylus-absent experimental field introduction sites. 

After being subjected to the selective pressures of the new parasite-free environment for 

one and two years (i.e., approximately four and eight guppy generations (62)), juvenile guppies 

were collected from the four derived Gyrodactylus-absent populations and from the source 
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Gyrodactylus-present population. These guppies were then bred for two generations under 

parasite-absent common garden conditions in the laboratory, thus controlling for plastic and 

maternal effects. We then performed individual-based laboratory infections to assess resistance 

to Gyrodactylus turnbulli. We previously analyzed data for the females in this experiment, and 

showed that they rapidly and repeatably evolved increased resistance to Gyrodactylus after this 

parasite is removed, a result that did not match theoretical expectations (28). In the present paper, 

we ask to what extent males show similar evolutionary responses in resistance, by specifically 

addressing five key questions related to parallel evolution of the sexes (Table 3.1).  

 

3.3 Methods: 

Experimental Introductions 

In 2008, juvenile guppies were collected with butterfly nets from a site in the Guanapo 

River (ñGuanapo sourceò -10Á 38ǋ 23ǌN, 61Á14ǋ54ǌW and 10Á 39ǋ 14ǌN, 61Á15ǋ 18ǌW) in 

Trinidad, as part of a United States National Science Foundation Frontiers in Integrative 

Biological Research project led by D. Reznick (63). All guppies were quarantined and treated for 

a wide spectrum of pathogens by means of Fungus Eliminator (Jungle Labs, Cibolo, USA), Clout 

(Sentry AQ Mardel, Omaha, USA), and commercial versions of erythromycin and monocyclene 

(Maracyn and Maracyn Two ï Sentry AQ Mardel, Omaha, USA). The guppies were reared 

separated by sex so that they remained virgin and, 3 weeks prior to the introductions when they 

were already mature, they were mated in tanks of 5 males and 5 females. In March (dry season), 

these guppies were introduced into two previously guppy-free upstream tributaries (Lower Lalaja 

and Upper Lalaja) of the Guanapo River, and the sexes of a given mating group were introduced 

into separate streams to maximize effective population size. Of these individuals, 37 and 38 of 
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each sex were introduced into the Lower Lalaja and Upper Lalaja sites, respectively. In 2009, 

this process was repeated with newly-collected Guanapo source guppies that were introduced 

into two additional guppy-free upstream tributaries (Taylor and Caigual) of the Guanapo River. 

On this occasion, 51 and 64 guppies of each sex where introduced into the Taylor and Caigual 

sites, respectively.  

The four tributaries used for the introductions differed from the Guanapo source 

environment in several ways. First, the Guanapo source site had a diversity of parasites 

(including Gyrodactylus spp.), whereas the introduction sites were free of guppies and therefore 

of their host-specific parasites (including Gyrodactylus spp.). Second, the Guanapo source site 

had several important predatory fishes (including the pike cichlid, Crenicichla frenata), whereas 

the introduction sites had only the weak gape-limited fish Rivulus hartii (64). Third, the Guanapo 

source site had a more open forest canopy and possibly higher resource availability for guppies 

than did the introduction sites (65, 66). The different introduction sites were reasonably similar 

in these properties, except that two (Upper Lalaja and Taylor) had more open canopies, and 

therefore higher productivity, as a result of experimental canopy thinning (66). More details on 

the experimental introductions and sites can be found in (28, 62, 65, 66, 67, 68).  

 

Field Collections 

Field collections were performed in 2010, two years (approximately eight guppy 

generations) after the introductions into the Upper and Lower Lalaja and one year 

(approximately four guppy generations) after the introductions into the Taylor and Caigual. 

Guppies were also collected at these times from the Guanapo source population, which continued 

to be infected with Gyrodactylus spp (55; Dargent pers. obs.)). All collections were made with 
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butterfly nets, and the fish were immediately treated with Fungus Eliminator, Clout, Maracyn, 

and Maracyn Two. The guppies were held for about three months in Trinidad in population- and 

sex-specific tanks, before being transported in plastic bottles by airplane to the C. Ghalambor 

laboratory at Colorado State University. In the laboratory, the guppies were housed in 

population- and sex-specific tanks following Reznick (69) with two modifications, [1] flow-

through systems were used to standardize water quality, and [2] the tanks were smaller (1.8 l). 

When the field-collected guppies reached sexual maturity, each female was randomly 

mated to a field-collected male from the same site (males were not reused) to produce a first 

laboratory generation (F1). This F1 generation was then raised as described above before being 

transferred at 84-140 days of age to our laboratory at McGill University. At McGill, the guppies 

were mated as described above to produce a second (F2) laboratory generation. All rearing 

procedures at McGill were the same as those at Colorado State except for a minor change of diet. 

At Colorado State, the guppies were fed brine shrimp and paste made from Tetramin Tropical 

Flakes (Tetra, Melle, Germany) [following Reznick (69)]. At McGill, we replaced the brine 

shrimp component with the same volume of paste. 

 

Experimental Infections 

Infection trials for the F2 guppies took place after they were at least 12 weeks old. For 

each trial, experimental guppies were individually isolated for 7 days prior to infection and for 

24 days after initial infection. This isolation took place in 1.8 l containers in an Aquaneering Inc. 

flow-through system, with filters to prevent any movement of parasites, food, or waste products 

between tanks. During isolation each guppy was fed a daily diet of 10 µl paste of Tetramin 

Tropical Flakes. For infection, each individual was first anaesthetized in 0.02% MS222 (Tricaine 
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Methanesulfonate ï Argent Chemical Laboratories, Redmond, USA) buffered to a neutral pH 

with NaCO3. Each guppy was then weighed to the nearest 0.0001 g, photographed for size 

(standard length) measurements in ImageJ, and infected with two Gyrodactylus turnbulli (details 

below). We infected a total of 63 male and 129 female guppies (Appendix 3.A1). To avoid the 

possibility that host-parasite co-evolutionary dynamics influenced our results, we used a G. 

turnbulli strain that was novel to all the populations. These test parasites were an isogenic strain 

isolated from ï and propagated on ï local (Montreal, Canada) pet store guppies. 

All guppies were mature and un-mated at the time of the experiments. The infections 

were started by removing scales carrying the parasite from a donor guppy held in a separate 

container (70), and then placing this scale next to the anaesthetized recipientôs caudal fin. This 

procedure routinely succeeded in transferring two parasites within 5 minutes. Afterward, each 

guppy was allowed to recover and was then returned to its isolation tank. We then monitored 

parasite population growth on each isolated guppy for 24 days or until the guppy died. This 

monitoring was achieved by ï every two days ï anaesthetizing each guppy and counting its 

parasites using a dissecting scope at 18x magnification.  

 

Analysis 

We first analyzed whether the populations or sexes differed in body size or mortality. For 

body size, we used ANOVA with population and sex as factors and standard length (SL - 

distance from the tip of the snout to the end of the caudal peduncle) as the measure of size. For 

mortality, we fit a generalized linear model (GLM) with a binomial response variable (died vs. 

survived) and a logit link function, with population and sex as predictors. We also tested whether 
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guppies that died differed in their day of death by fitting a GLM with ln-transformed day of 

death as a response variable and population and sex as predictors.  

We next analyzed two measures of parasite resistance that are used commonly in studies 

of host-Gyrodactylus dynamics (28, 43, 71). ñPeak loadò is the maximum number of parasites 

counted on an individual guppy on any day during the experiment. Analyses based on this 

measure included individuals that died before the end of the experiment because mortality 

generally occurred when parasite load had already stabilized or started to decrease. ñIntrinsic rate 

of increaseò (r) of the parasite population is the slope of the regression of ln-transformed 

Gyrodactylus counts between day 0 and day 10 on an individual guppy. Analyses based on this 

measure included only individuals that survived to at least day 10. Within this framework, lower 

peak load and lower r values represent higher resistance as they indicate a higher capability of 

the guppies to limit infection. 

To test whether population and sex influenced parasite peak load and r, we used GLMs. 

Models included population and sex as factors, size as a covariate and interactions between 

population and both sex and size. Peak load was modeled with GLMs using a negative binomial 

error distribution and the log link function. All other data were modeled with GLMs using the 

identity link function. Analysis of each model was followed by a series of planned contrasts that 

specifically informed our questions (Table 3.1). 

The degree of parallelism in resistance evolution between the sexes and populations was 

assessed by [1] graphical interpretation of divergence in sex trait-space and [2] phenotypic 

change vector analysis (PCVA) (72, 73) of evolutionary trajectories in multivariate resistance 

trait-space (i.e., orientation of divergence). For the graphical interpretation, relative change in 

resistance by sex was represented as trait divergence between the source and the introduced 
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populations with change for each sex on a different axis. The source population values were 

centered to a mean of 0 and the values of the introduced populations were recalculated relative to 

the new source mean. A 1:1 line was used to depict the trajectory of equal amount of change in 

trait value for both sexes (i.e., parallel evolution). For the PCVA, the sex-specific population 

centroids used in this analysis were multivariate least squares means derived from MANCOVA 

models with the predictor variable being population contrasts (source vs. each introduced 

population) and the response variables being r and ln peak load. The respective change vectors 

(connecting each introduced population to the source) were then compared to each other with 

respect to their orientation (angle between vectors). Statistical significance for these comparisons 

was based on permutation of model residuals to obtain n=1000 randomized datasets (72, 73). All 

statistical procedures were conducted in R 3.0.2 (R Development Core Team 2013).  

 

3.4 Results: 

General effects  

Body size (SL) of the experimental guppies did not differ among populations, except that 

Lower Lalaja guppies were larger than Upper Lalaja guppies (Appendices 3.A1, 3.A2 and 3.A3). 

Female guppies were larger than male guppies ï and this sexual dimorphism was similar among 

populations (non-significant interaction between population and sex ï Table 3.A2). Infection 

with Gyrodactylus induced higher mortality in female than male guppies (Appendix 3.A4). 

Although the maximal model also included population (results not shown), its effects were not 

significant and so population was removed from the final model. Among the guppies that died, 

day of death was not explained by either population, sex, or the interaction (Appendix 3.A5). A 

survival analysis using Cox proportional hazards lead to the same conclusion (Appendix 3.A6). 



92 

 

Note that similarity among populations in overall parasite-induced mortality aided our 

subsequent ability to uncover differences in parasite load because differences in parasite peak 

load were not then due to a greater accumulation of parasites on individuals that survived for 

longer periods of time.  

 

Resistance (Questions 1-4) 

Population, sex, and their interaction all had strong effects on Gyrodactylus peak load 

and intrinsic rate of increase (r) (Table 3.2). We therefore performed planned comparisons that 

specifically answered our initial questions about parallel evolution of the sexes (Table 3.1). 

These comparisons were based on simplified models that excluded body size because [1] body 

size effects were inconsistent (Table 3.2, Appendices 3.A1, 3.A7 and 3.A3), and [2] model 

simplification through stepwise deletion tended to drop size from all models (except for female 

peak load). Nonetheless, including body size as a covariate generally did not qualitatively change 

the results (Appendix 3.A8). 

Answer 1 ï On sexual dimorphism in the source population: Guppies from the Guanapo 

source population were sexually dimorphic in resistance ï males had higher resistance (lower 

peak load and lower r) than females (Table 3.3). Answer 2 ï On female evolution: Females from 

three of the four introduced populations had higher resistance (lower peak loads and lower r) 

than females from the Guanapo source population (Table 3.3), indicating the evolution of 

increased resistance in the absence of parasite pressure (as earlier reported by 28). Answer 3 ï 

On male evolution: In contrast to the higher resistance that had evolved in females from three of 

the four introduced populations (28), male resistance to parasites did not differ between the 

introduced populations and the Guanapo source population for r, and only differed in one case 
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for peak load (Table 3.3). The exception was that Taylor males had a higher peak load (i.e. 

decreased resistance) than Guanapo source males. Together these results indicate lack of 

evolution of resistance in male guppies in the absence of parasites. Answer 4 ï On sexual 

dimorphism in the introduced populations: Of the three populations in which females evolved 

increased resistance, only one (Lower Lalaja) showed a difference in peak load between males 

and females (Table 3.3), and none of the three populations showed a difference between males 

and females in r (Table 3.3). In the fourth introduced population (Caigual) neither females nor 

males evolved and sexual dimorphism was maintained in both r and peak load. Overall, sexual 

dimorphism in resistance decreased in the introduced populations as females evolved to become 

more similar to the ancestrally more-resistant males (Figure 3.1A), which did not themselves 

show any (except Taylor for peak load) post-introduction evolution of resistance  

 

Parallelism (Question 5 ï On the sex-specific trajectories) 

To more formally assess the degree of parallelism in the evolution of resistance between 

the sexes and populations, we performed two analyses. The first analysis considered trait 

divergence between the source and introduction populations in male (y-axis) versus female (x-

axis) trait-space. This analysis most directly evaluates the relative amount of change in males 

versus females within populations (Figure 3.2), which thus informs the extent to which the sexes 

evolved in parallel. In this analysis, all of the four introduced populations showed resistance trait 

changes that did not overlap with the 1:1 line for peak load and two out of four populations 

overlapped (for male traits only) with the 1:1 for intrinsic rate of increase, thus confirming non-

parallel evolution. 
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The second analysis considers evolutionary trajectories in resistance trait-space (Figure 

3.1), which assesses both parallelism between the sexes (as above) and between the populations 

within sexes. In this analysis, visual inspection showed that females from the four introduced 

populations shared the same orientation of phenotypic change vectors, indicating a clear pattern 

of parallel evolution among female populations, towards higher resistance than the Guanapo 

source population and towards the ancestral male position (Figure 3.1A). Consistent with the 

visual inspection, the angles of female trajectories in trait space did not differ among the 

introduced populations in the PCVA (Table 3.4A). Furthermore, variation around the mean 

female phenotypic trait spaces only overlapped between the Caigual introduced population and 

the Guanapo source population, coherent with the lack of resistance evolution in these females 

(Figure 3.1B). Males showed a very different pattern, with visual inspection implying non-

parallel evolution among populations (i.e., different orientations of phenotypic change vectors). 

However, only 2 of 6 paired comparisons of male phenotypic vector orientations among 

populations were significant (Table 3.4A), presumably owing to high variation in resistance traits 

among males (Figure 3.1C). Visual inspection (and the first analysis above) indicated differences 

between males and females in the orientation of phenotypic trait vectors, although this was 

statistically significant only for guppies from the Taylor introduced population (Table 3.4B)ï for 

the same reason (high variation in males). Thus, the vector analysis had sufficient power to  

detect non-parallel evolution  when substantial evolution had occurred but not when little 

evolution had occurred). 
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3.5 Discussion: 

In the ancestral population (Guanapo source), resistance to infection by Gyrodactylus 

parasites was greater for male than for female guppies (Question 1 in Table 3.1). After release 

from parasite pressure through replicate experimental introductions, the evolution of resistance 

did not proceed in parallel (Question 5). In particular, males did not show much (if any) 

evolution of resistance (Question 3), whereas females generally evolved increased resistance 

(Question 2). The end result was an evolutionary reduction of sexual dimorphism in resistance to 

parasite infection (Question 4). Our main focus now will be on potential causal explanations for 

the observed non-parallel evolution, but we must first deal with the possibility that observed 

sexual dimorphism in resistance could be simply a correlated effect of other differences between 

the sexes.  

Male and female guppies differ in a number of ways that might influence parasite loads, 

which could thereby confound inferences about sexual differences in resistance per se. First, 

female guppies might owe their higher Gyrodactylus numbers in nature (55) to being more 

gregarious than males (74), because this might promote higher rates of parasite transmission. 

Second, lower Gyrodactylus loads on males in nature might result from greater (relative to 

females) infection-induced susceptibility to predation or flooding (42), which would truncate the 

accumulation of parasites. Third, studies in other systems have suggested that ecological 

differences between the sexes, such as different diets or microhabitats, could lead to sexual 

dimorphism in parasite loads (75). While these  effects could potentially have altered the 

selective environment of our field guppy populations (see below ñselective explanationsò), none 

of them are relevant to the laboratory trial part of our study because (1) the fish were isolated and 

so parasite transmission was not possible, (2) predators and flooding were absent, and (3) the 
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sexes had similar diets and habitats. Finally, differences in body size can influence parasite loads 

(43), but the larger size of females did not explain their lower resistance in our study (Table 3.2, 

Appendices 3.A7 and 3.A8). All of these observations suggest that the sexual dimorphism in 

resistance observed in guppies from the Guanapo source, and the Lower Lalaja and Caigual 

introductions is not simply a correlated effect of other differences between the sexes. 

 

Selective explanations 

The key question that our results bring to the forefront is: why should resistance evolve 

differently for males than for females when both sexes are similarly removed from parasite 

pressure? We can see three basic possibilities. First, selection imposed by Gyrodactylus might 

have shifted differently for males versus females when the parasite was eliminated through the 

experimental introductions. Second, selection imposed by other environmental factors might 

have shifted differently for males versus females, and the resulting non-parallel evolution of 

other traits might then have driven correlated non-parallel changes in resistance. Third, even if 

selection shifted similarly for males versus females, they might have responded differently 

owing to different genetic or functional constraints. We now consider each of these possibilities 

in turn. 

Males and females in the ancestral population were sexually dimorphic for resistance 

(Figure 3.1), which might imply that they were ï in that environment ï under different intensities 

of selection for resistance. In particular, the higher resistance of males than females suggests a 

history of stronger selection on the former than the latter ï perhaps because the negative effects 

of Gyrodactylus infection are stronger for males than for females (42). Stated another way, males 

might be under stronger selection for resistance to infection because ï once infected ï they are 
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less tolerant than females (sensu  76), or more susceptible to predators or flooding. Indeed, this 

expectation makes sense given that (1) males invest much more of their time and energy into 

sexual activities ï as opposed to feeding ï than do females (77, 78), (2) males are more likely to 

be preyed upon than females (79), (3) infected males are more likely than females to be 

displaced downstream during flooding events (42), and (4) infected males (but presumably not 

females) have reduced mating opportunities (46). Starting from these ancestral conditions 

(stronger selection for resistance in males than females), parasite removal would cause a greater 

shift in selection for resistance in males (from very strong to absent) than females (from modest 

to absent). However, it is not clear how these differences could explain our results: according to 

theory (17), males would be expected to evolve decreased resistance (assuming resistance is 

costly) and females would be expected to evolve in the same direction but less rapidly. This 

result clearly was not obtained in our study: males did not evolve resistance (except Taylor males 

for peak load) and females evolved increased resistance (Figure 3.1).  

Alternatively, empirical evidence (80) and theory (18) suggest that hosts could invest in 

reducing the damage caused by a given parasite load (i.e., tolerance) rather than in mechanisms 

to reduce parasite numbers (i.e., resistance). It is therefore conceivable that the lack of male 

resistance evolution (except for Taylor peak load) could be explained if males were instead 

evolving along the tolerance axis of defense. Yet we did not find evidence to support the 

evolution of tolerance in males (Appendices 3.A9 and 3.A10) or in females (as reported in 28) 

for any of the populations. Finally, females in the introduced populations have lower mortality 

rates and longer life expectancy than males (68), and might thus benefit more from increased 

resistance (26, see below - 81). Nonetheless, this possibility seems unlikely to explain the 

differential responses of the two sexes in the introduction given that higher male than female 
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mortality is a general feature of all guppy populations (79, 82). These results suggest that we 

must look beyond parasites themselves if we are to explain the non-parallel responses of males 

and females.  

The introduced populations experienced a dramatic shift not only in parasitism but also in 

several other potential selective forces. Principal among these forces is predation, which is 

known from many studies to exert a very large effect on guppy evolution (37, 38). Specifically, 

the ancestral population is subject to high predation whereas the introduced populations are 

subject to low predation (65). Perhaps the shift in predation differentially influenced selection on 

males versus females, which then differentially influenced ï through a correlated evolutionary 

response ï the evolution of resistance. Indeed, we previously argued that the evolution of 

increased resistance in females following parasite removal might be a pleiotropic by-product of 

evolution in response to release from predation (28). Under this scenario, strong predator-based 

selection on, and evolution of, a trait that correlates with resistance drives the evolution of 

increased resistance despite release from parasitism. For example, the selective shift from a 

shorter to a longer life expectancy has been shown to cause the evolution of a slower life history 

in guppies (e.g., maturation at a later age and lower reproductive effort) (83, 84), and this in turn 

is expected to lead to increased investment in resistance (26, 81). We previously invoked this 

explanation for the evolution of increased resistance in females but it doesnôt seem likely to 

explain why resistance did not evolve in males. The main reason is that males experience 

stronger predation pressure than females in the ancestral environment (79), and so release from 

predation should have an stronger effect on males than on females. Thus, we will now assume 

that males were ï like females ï under selection for increased resistance following parasite 

removal.  
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In the absence of a clear selective reason for non-parallel resistance evolution by the 

sexes, we are drawn to consider explanations not based on the immediate shift in selection. One 

explanation that emerged naturally from the data and from the above considerations was the 

presence of a stronger evolutionary constraint on males than on females. First, if historical 

selection for resistance was stronger on males than on females (see above), males might retain 

lower available genetic variance for resistance, leading to a weaker response even under an equal 

shift in selection (85). (Note that, despite sharing their autosomes, males and females often show 

different genetic variation for the same traits (86)). Supporting this idea, studies of other systems 

have shown that evolutionary responses to shifts in predation pressure can be limited owing to a 

lack of variation in defense traits (87). Second, the costs of increasing resistance might not be 

linear, making progress towards ever higher resistance progressively more costly and likely to 

occur at a decelerating rate. In our study, this constraint would be greater for males than for 

females given the formerôs initially higher resistance (i.e., males are closer to the absolute limit 

of having no parasites). In either case, it is conceivable that males could be experiencing 

selection for increased resistance (perhaps for the same reason as females) but they might not 

increase further in resistance, or they might do so more slowly. Thus, we suggest that sexual 

dimorphism in the source populations (males more resistant than females) might be constraining 

further increases in resistance more strongly for males than for females. That is, sexual 

dimorphism in resistance can constrain parallel evolution of the sexes in response to a similar 

shift in selection. 
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Conclusions 

Our study was conducted in the growing tradition (e.g., 6, 7) of not just assessing whether 

evolution is parallel (or convergent) but also of quantifying the degree to which evolution is 

(non)parallel. We here merged this quantitative perspective with the idea of considering 

parallelism between the sexes (8, 9, 88) rather than only among populations or species. Our most 

striking result was that males and females showed considerable differences in their evolution of 

resistance in response to parasite removal. This outcome could arise because the same 

environmental shift has different consequences for selection on males versus females, as might 

often be the case. However, we here suggest that the same result can emerge owing to constraints 

even when the shift in selection is the same. As one type of constraint, the sex that has 

ancestrally experienced stronger selection might harbor less genetic variation in the trait. As 

another, the sex with higher trait values might have more difficulty evolving ever higher trait 

values if the costs of increased trait expression are non-linear. Specifically, males were ï in our 

study ïancestrally more resistant to parasites than were females, and so the dramatic increase in 

resistance for females was probably unattainable for males. Studies of parallel evolution would 

benefit from increasing attention to sexual differences and their potential causes and 

consequences. 
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Table 3.1: Planned comparisons representing specific hypotheses to test for parallel 

evolution of the sexes 

Question Description Comparison 

   
Q1 Is resistance sexually dimorphic in 

the source population? 

Males vs. females of the Guanapo 

source 

   
Q2 Did females evolve resistance in 

the introduced populations? 

Introduced females by population 

vs. Guanapo source females 

   
Q3 Did males evolve resistance in the 

introduced populations? 

Introduced males by population vs. 

Guanapo source males 

   
Q4 Is resistance sexually dimorphic in 

the introduced populations? 

Males vs. females within 

introduced populations 

   
Q5 Did the sexes evolve resistance in 

a similar way? 

Change in males vs. change in 

females from the introduced 

populations 

   
The set of question addresses the parallel evolution of the sexes under our experimental scenario 

where we removed parasites and introduced guppies from an ancestral population [Guanapo 

source (S)] into four tributary streams [Lower Lalaja (L), Upper Lalaja (U), Taylor (T) and 

Caigual (C)]. The right column lists the planned comparisons of resistance levels between the 

sexes or populations that need to be conducted to answer the question. 

 



112 

 

Table 3.2: GLM for Gyrodactylus peak load and intrinsic rate of increase (r) on Poecilia 

reticulata 

Response Independent Variables df Mean Sq F P-value 

      
Peak load Population 4 87392 5.38 <0.001 

 Sex 1 107815 6.64 0.011 

 Size 1 294972 18.15 <0.001 

 Population:Sex 4 59945 3.69 0.007 

 Population:Size 4 31981 1.97 0.101 

 Residuals 177 16249   

      
r Population 4 0.015 4.36 0.002 

 Sex 1 0.13 37.22 <0.001 

 Size 1 0.002 0.66 0.418 

 Population:Sex 4 0.009 2.69 0.033 

 Population:Size 4 <0.001 0.17 0.954 

 Residuals 159 0.003   

      
Generalized linear model results for peak load (integer variable with a negative binomial 

distribution) and intrinsic rate of increase (continuous variable with a normal distribution) of 

Gyrodactylus turnbulli on Poecilia reticulata with population and sex as factors and guppy 

standard length as a covariate.  
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Table 3.3: Planned contrasts of Gyrodactylus peak load and intrinsic rate of increase (r) by 

population and sex 

Question Comparison Peak load
a
 r

b
 

    
Q1 Sǀ vs Sǁ -3.84***  -4.42***  

    
Q2 Sǀ vs Cǀ -1.11 -1.43 

 Sǀ vs Lǀ -3.8***  -3.83***  

 Sǀ vs Tǀ -2.75**  -3.19**  

 Sǀ vs Uǀ -3.95***  -3.36**  

    
Q3 Sǁ vs Cǁ 0.22 -1.32 

 Sǁ vs Lǁ -1.91 -0.86 

 Sǁ vs Tǁ 2.98**  0.65 

 Sǁ vs Uǁ -0.25 -0.22 

    
Q4 Cǀ vs Cǁ -2.42*  -4.93***  

 Lǀ vs Lǁ -3.78***  -2.27
c
 

 Tǀ vs Tǁ 1.81 -0.83 

 Uǀ vs Uǁ -1.08 -1.88 

    
Planned comparisons with generalized linear models for peak load (integer variable with a 

negative binomial distribution)  and intrinsic rate of increase (r -continuous variable with a 

normal distribution) of Gyrodactylus turnbulli on Poecilia reticulata. Comparisons test whether 

peak load or r: [Q1] was sexually dimorphic in the ancestral population; [Q2] evolved in the 

introduced females; [Q3] evolved in the introduced males; and [Q4] was sexually dimorphic in 

the introduced populations. 
a
z-values reported for peak load and 

b
t-values for r. Abbreviations for 

population names: Guanapo source (S) population, and Lower Lalaja (L), Upper Lalaja (U), 

Caigual (C) and Taylor (T) introduced populations. *p<0.05, **p<0.01, ***p<0.001, 
c 
Non-

significant after FDR correction. 
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Table 3.4: Vector angles of resistance evolutionary trajectories 

(A) 

 Between populations 

 
    

  
Comparison Angle (°) 

    Males 

 

Caigual vs. Taylor 164.5  

  

Lower Lalaja vs. Caigual 13.6  

  

Lower Lalaja vs. Taylor 178.1**   

  

Lower Lalaja vs. Upper Lalaja 1.3 

  

Upper Lalaja vs. Caigual 14.9 

  

Upper Lalaja vs. Taylor 179.4**  

    Females 

 

Caigual vs. Taylor 3.1 

  

Lower Lalaja vs. Caigual 1.6 

  

Lower Lalaja vs. Taylor 4.7 

  

Lower Lalaja vs. Upper Lalaja 4.1 

  

Upper Lalaja vs. Caigual 5.7 

  

Upper Lalaja vs. Taylor 8.8 

     

(B) 

Within populations (females vs. males) 

    

  
Population Angle (°) 

    

  

Caigual 1.8 

  

Taylor 165.2*  

  

Upper Lalaja 14.9 

  

Lower Lalaja 17 

    Quantification of evolutionary trajectories in resistance trait space based on measures of 

orientation (vector angles in degrees) derived from PCVA. (A) Comparisons of female and male 

trajectories within each of the introductions relative to the source populations. (B) Comparisons 

between populations within the sexes. Observed significance levels are based on empirically 

generated (n=1000) residual permutations (72,73). *p<0.05, **p<0.01. 
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Figure 3.1: Evolutionary divergence for males and females in resistance trait-space  

(A) For each of the four introduced populations (L, U, T, and C), the evolutionary trajectory 

within the sexes (males: empty symbols, females: filled symbols) is depicted as the line 

connecting the source population centroid (S) to the introduced population centroids. Panels B 

(females) and C (males) show the same data for each sex separately, with letters depicting 

population centroids and ellipses representing the 75% data spread. Curved trajectories in each of 

the three panels depict the negative binomial GLM fit to the raw data to further illustrate the 

evolutionary trajectories overall (A), for females (B), and for males (C). 
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Figure 3.2: Symmetry plots of the evolution of resistance by sex 

Evolution of parasite resistance for females (x-axis) and males (y-axis) in the four introduced 

populations (L, U, T and C) based (A) on the mean number of Gyrodactylus at peak load, and 

(B) on the mean intrinsic rate of Gyrodactylus increase from the start of infection to day 10 of 

infection. In each case, population means are shown relative to the Guanapo source population 

mean (the origin in each graph); e.g., intrinsic rates of increase of parasites on female Taylor 

guppies were on average 0.046 day
-1 

lower than those on Guanapo Source females but 0.019 day
-

1 
higher when the respective male populations were compared with one another. Points depict 

population means with 95% CIs and crosses depict 95% CIs for the source mean (CIs based on 

n=1000 bootstrap samples). The 1:1 line represents parallel evolution, i.e., where both males and 

females would have experienced identical changes. Non-overlap of the introduced population 

CIs with the 1:1 line suggests that the sexes in a given population did not evolve resistance in a 

parallel manner. 

 


























































